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Abstract. In our earlier work, we constructed a specific non-compact quan-

tum group whose quantum group structures have been constructed on a

certain twisted group C∗-algebra. In a sense, it may be considered as a

“quantum Heisenberg group C∗-algebra”. In this paper, we will find, up to

equivalence, all of its irreducible ∗-representations. We will point out the

Kirillov type correspondence between the irreducible representations and the

so-called dressing orbits. By taking advantage of its comultiplication, we will

then introduce and study the notion of inner tensor product representations.

We will show that the representation theory satisfies a “quasitriangular” type

property, which does not appear in ordinary group representation theory.

1. Introduction

Recently in [11], we constructed a specific non-compact C∗-algebraic quantum
group, via deformation quantization of a certain non-linear Poisson–Lie bracket
on an exponential solvable Lie group. The underlying C∗-algebra of this quantum
group has been realized as a twisted group C∗-algebra of a nilpotent Lie group.

From its construction, it is reasonable to view it as a “quantum Heisenberg
group C∗-algebra” (This observation will be made a little clearer in the third sec-
tion.). Focusing on its C∗-algebra structure, we study in this paper its irreducible
∗-representations. It is not difficult to see that there exists a Kirillov type, one-to-
one correspondence between the irreducible ∗-representations and the “dressing
orbits” at the level of its Poisson–Lie group counterpart.

Since the object of our study is actually a Hopf C∗-algebra (i. e. quantum
group), we may use its comultiplication to define and study inner tensor prod-
uct of representations. This is a generalization to quantum case of the inner

2000 Mathematics Subject Classification. 46L65, 81R50, 22D25.
529



530 BYUNG-JAY KAHNG

tensor product representations of an ordinary group. We will show that unlike
in the case of an ordinary group and in the cases of many earlier examples of
non-compact quantum groups (e. g. [20], [26], [23], [16]), the inner tensor prod-
uct representations of our Hopf C∗-algebra satisfy a certain “quasitriangularity”
property.

Here, we only study representation theory of the specific example of [11]. How-
ever, our earlier results ([10, 11]) imply that this quantum group is just one exam-
ple of a larger class of solvable quantum groups having twisted group C∗-algebras
or (more general) twisted crossed product algebras as underlying C∗-algebras.
One of the main purposes of [11] and this paper is to present a case study, so
that we are later able to develop a procedure to construct and study more general
class of locally compact quantum groups. Eventually, we wish to further develop
a generalized orbit theory of Kirillov type, which would then be used to study
the harmonic analysis of the locally compact quantum groups. This will be our
forthcoming project.

Since this paper is essentially a continuation of [11], we will keep the same
notation as in that paper. Some of the notations are reviewed in section 2. This
section discusses the classical counterparts (Poisson–Lie groups) of our quantum
groups, as well as the description of the dressing orbits. Results here will be useful
in our future study.

Our main examples are briefly described at the beginning of the third section.
In the rest of section 3, we discuss their representation theory: We find all the
irreducible ∗-representations up to equivalence. We then point out the Kirillov
type one-to-one correspondence between these representations and the dressing
orbits.

In the last section, we study inner tensor product representations. By using
the quasitriangular quantum R-matrix operator obtained in [11], we will show
some interesting properties that do not appear in ordinary group representation
theory.

2. Preliminaries: Poisson–Lie groups, dressing actions and dressing

orbits

We start with a brief review of the notations used in [11], as well as some
basic results from Poisson–Lie group theory. One of the main purposes here is to
calculate the dressing orbits at the classical level.

2.1. The Poisson–Lie groups. Let H be the (2n+ 1)–dimensional Heisenberg
Lie group. Its underlying space is R2n+1 and the multiplication on it is defined
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by
(x, y, z)(x′, y′, z′) =

(

x+ x′, y + y′, z + z′ + β(x, y′)
)

,

for x, y, x′, y′ ∈ Rn and z, z′ ∈ R. Here β( , ) is the usual inner product on Rn,
following the notation of [11].

Consider also the extended Heisenberg Lie group H̃, with the group law defined
by

(x, y, z, w)(x′, y′, z′, w′) =
(

x+ ewx′, y + e−wy′, z + z′ + (e−w)β(x, y′), w + w′
)

.

The notation is similar as above, with w,w′ ∈ R. This group contains H as a
normal subgroup.

In [11], we obtained the “dual Poisson–Lie group” G of H. It is determined by
the multiplication law:

(p, q, r)(p′, q′, r′) = (eλr
′
p+ p′, eλr

′
q + q′, r + r′),

while the dual Poisson–Lie group G̃ of H̃ is determined by the multiplication law:

(p, q, r, s)(p′, q′, r′, s′) = (eλr
′
p+ p′, eλr

′
q + q′, r + r′, s+ s′).

Here λ ∈ R is a fixed constant, which determines a certain non-linear Poisson
structure on G (or G̃) when λ 6= 0.

Although we do not explicitly mention the Poisson brackets here (see instead
[11]), we can show indeed that H̃ and G̃ (similarly, H and G) are mutually dual
Poisson–Lie groups. For definition and some important results on Poisson–Lie
groups, see for example the article by Lu and Weinstein [17] or the book by Chari
and Pressley [4].

In [11], using the realization that the Poisson bracket on G is a non-linear
Poisson bracket of the “cocycle perturbation” type, we have been able to con-
struct a quantum version of G: The (non-commutative) Hopf C∗–algebra (A,∆),
whose underlying C∗–algebra is a twisted group C∗–algebra. Similarly for G̃, we
constructed the Hopf C∗–algebra (Ã, ∆̃). These are the main objects of study in
[11] and in this paper.

2.2. Basic definitions: Dressing actions. Let G be a Poisson–Lie group, let
G∗ be its dual Poisson–Lie group, and let g and g∗ be the corresponding Lie
algebras. Together, (g, g∗) forms a Lie bialgebra. On the vector space g⊕ g∗, we
can define a bracket operation by

[

(X1, µ1), (X2, µ2)
]

(2.1)

=
(

[X1, X2]g − ad∗µ2
X1 + ad∗µ1

X2, [µ1, µ2]g∗ + ad∗X1
µ2 − ad∗X2

µ1

)

,
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where ad∗X µ and ad∗µX are, respectively, the coadjoint representations of g on g∗

and of g∗ on g = (g∗)∗. This is a Lie bracket on g ⊕ g∗, which restricts to the
given Lie brackets on g and g∗. We denote the resulting Lie algebra by g ./ g∗,
the double Lie algebra [17].

Let D = G ./ G∗ be the connected, simply connected Lie group corresponding
to g ./ g∗. There are homomorphisms of Lie groups

G ↪→ D ←↩ G∗,

lifting the inclusion maps of g and g∗ into g ./ g∗. Thus we can define a product
map G × G∗ → D. We will assume from now on that the images of G and G∗

are closed subgroups of D and that the map is a global diffeomorphism of G×G∗
onto D. In this case, we will say that D is a double Lie group. In particular, each
element of D has a unique expression g · γ, for g ∈ G and γ ∈ G∗.

Suppose we are given a double Lie group D = G ./ G∗. For g ∈ G and γ ∈ G∗,
regarded naturally as elements in D, the product γ · g would be factorized as

γ · g = gγ · γg,

for some gγ ∈ G and γg ∈ G∗. We can see without difficulty that the map
λ : G∗ ×G→ G defined by

λγ(g) = gγ

is a left action of G∗ on G. Hence,

Definition 1. The map ρ : G×G∗ → G defined by

ργ(g) = g(γ−1)

is a right action, called the dressing action of G∗ on G.

Remark. Sometimes, the action λ is called the left dressing action, while the
action ρ is called the right dressing action. It is customary to call the right action
ρ the dressing action. Semenov–Tian–Shansky [22] first proved that the (right)
dressing action of G∗ on G is a Poisson action (i. e. it preserves the respective
Poisson structures). The notion of dressing action still exists (at least locally),
even if the assumption that G×G∗ ∼= D is not satisfied. See [17].

For any Lie algebra h, it can always be regarded as a Lie bialgebra by viewing
its dual vector space g = h∗ as an abelian Lie algebra. Then the dressing action
of H on G actually coincides with the coadjoint action of H on h∗ (= g ∼= G). In
this sense, we may regard the dressing action as a generalization of the coadjoint
action. This is the starting point for the attempts to generalize the Kirillov’s
orbit theory, and this point of view has been helpful throughout this paper.
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We conclude the subsection by stating the following result by Semenov–Tian–
Shansky, which exhibits the close relationship between dressing actions and the
geometric aspects of Poisson–Lie groups.

Theorem 2.1. ([22], [17]) The dressing action G∗ on G is a Poisson action.
Moreover, the orbit of the dressing action through g ∈ G is exactly the symplectic
leaf through the point g for the Poisson bracket on G.

2.3. Dressing orbits for the Poisson–Lie groups G̃ and H̃. Let us consider
our specific Poisson–Lie groups G̃ and H̃, or equivalently, the Lie bialgebra (g̃, h̃).
We will construct here the double Lie group, dressing action, and dressing orbits.
Along the way, we will obtain the corresponding results for G and H.

By equation (2.1) and by using the Lie brackets on g̃ and on h̃ (see [11]), we
can construct the double Lie algebra g̃ ./ h̃. The space for it is g̃ ⊕ h̃, on which
the following Lie bracket is defined:

[

(p, q, r, s;x, y, z, w), (p′, q′, r′, s′;x′, y′, z′, w′)
]

=
(

λ(r′p− rp′) + (w′p− wp′) + (r′y − ry′),
λ(r′q − rq′) + (wq′ − w′q) + (rx′ − r′x),

0, (p′ · x− p · x′) + (q · y′ − q′ · y);

(wx′ − w′x) + λ(rx′ − r′x), (w′y − wy′) + λ(ry′ − r′y),

β(x, y′)− β(x′, y) + λ(p′ · x− p · x′) + λ(q′ · y − q · y′), 0
)

.

We then calculate the corresponding Lie group D̃. Using the notation ηλ(r) =
e2λr−1

2λ (the function introduced in Definition 2.3 of [11]), the group D̃ is given by
the following multiplication law:

(p, q, r, s;x, y, z, w)(p′, q′, r′, s′;x′, y′, z′, w′)

=
(

eλr
′
p+ e−wp′ + e−λr

′
ηλ(r′)y, eλr

′
q + ewq′ − e−λr

′
ηλ(r′)x, r + r′,

s+ s′ + (e−λr
′−w)p′ · x− (e−λr

′+w)q′ · y − ηλ(−r′)β(x, y);

e−λr
′
x+ ewx′, e−λr

′
y + e−wy′, z + z′ + (e−λr

′−w)β(x, y′)

+ λ(e−λr
′−w)p′ · x+ λ(e−λr

′+w)q′ · y + ληλ(−r′)β(x, y), w + w′
)

.

If we identify (p, q, r, s) ∈ G̃ with (p, q, r, s; 0, 0, 0, 0) and (x, y, z, w) ∈ H̃ with
(0, 0, 0, 0;x, y, z, w), it is easy to see that G̃ and H̃ are (closed) Lie subgroups of
D̃. This defines a global diffeomorphism of G̃ × H̃ onto D̃, since any element
(p, q, r, s;x, y, z, w) of D̃ can be written as

(p, q, r, s;x, y, z, w) = (p, q, r, s; 0, 0, 0, 0)(0, 0, 0, 0;x, y, z, w).
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In other words, D̃ is the double Lie group of G̃ and H̃, which will be denoted by
G̃ ./ H̃. Meanwhile, if we consider only the (p, q, r) and the (x, y, z) variables, we
obtain in the same way the double Lie group D = G ./ H of G and H.

By Definition 1, the dressing action of H̃ on G̃ is:
(

ρ(x, y, z, w)
)

(p, q, r, s) =
(

ewp− e−λr+wηλ(r)y, e−wq + e−λr−wηλ(r)x, r,

s− e−λrp · x+ e−λrq · y + e−2λrηλ(r)β(x, y)
)

.

The dressing orbits, which by Theorem 2.1 are the symplectic leaves in G̃ for its
(non-linear) Poisson bracket, are:

• Õs = {(0, 0, 0, s)}, when (p, q, r) = (0, 0, 0).
• Õp,q = {(ap, 1

aq, 0, c) : a > 0, c ∈ R}, when r = 0 but (p, q) 6= (0, 0).
• Õr,s =

{(

a, b, r, s− 1
ηλ(r)a · b

)

: (a, b) ∈ R2n
}

, when r 6= 0.

Here a · b denotes the inner product. The Õs are 1-point orbits, the Õp,q are
2-dimensional orbits, and the Õr,s are 2n-dimensional orbits.

Similarly, if we only consider the (p, q, r) and the (x, y, z) variables, we obtain
the expression for the dressing action of H on G as follows:

(

ρ(x, y, z)
)

(p, q, r) =
(

p− e−λrηλ(r)y, q + e−λrηλ(r)x, r
)

.

So the dressing orbits in G are:

• (1-point orbits): Op,q = {(p, q, 0)}, when r = 0.
• (2n-dimensional orbits): Or = {(a, b, r) : (a, b) ∈ R2n}, when r 6= 0.

Meanwhile, to calculate the dressing action of G̃ on H̃, it is convenient to
regard D̃ as the double Lie group H̃ ./ G̃ of H̃ and G̃. Indeed, there exists a
global diffeomorphism between H̃ × G̃ and D̃ defined by
(

(x, y, z, w), (p, q, r, s)
)

7→ (0, 0, 0, 0;x, y, z, w)(p, q, r, s, 0, 0, 0, 0)

=
(

e−wp+ e−λrηλ(r)y, ewq − e−λrηλ(r)x, r,

s+ (e−λr−w)p · x− (e−λr+w)q · y − ηλ(−r)β(x, y);

e−λrx, e−λry, z + λ(e−λr−w)p · x+ λ(e−λr+w)q · y + ληλ(−r)β(x, y), w
)

.

Similarly, we can show that D is the double Lie group of H and G.
Using this characterization of the double Lie group H̃ ./ G̃, the dressing action

of G̃ on H̃ is obtained by Definition 1. That is,
(

ρ(p, q, r, s)
)

(x, y, z, w)

=
(

e−λrx, e−λry, z + λ(e−λr)p · x+ λ(e−λr)q · y − λ(e−2λr)ηλ(r)β(x, y), w
)

.

The dressing orbits in H̃ are:
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• (1-point orbits): Õz,w = {(0, 0, z, w)}, when (x, y) = (0, 0).
• (2-dimensional orbits): Õx,y,w = {(αx, αy, γ, w) : α > 0, γ ∈ R}, when

(x, y) 6= (0, 0).

Similarly, the dressing action of G on H is given by
(

ρ(p, q, r)
)

(x, y, z)

=
(

e−λrx, e−λry, z + λ(e−λr)p · x+ λ(e−λr)q · y − λ(e−2λr)ηλ(r)β(x, y)
)

,

and the dressing orbits in H are:

• (1-point orbits): Oz = {(0, 0, z)}, when (x, y) = (0, 0).
• (2-dimensional orbits): Ox,y = {(αx, αy, γ) : α > 0, γ ∈ R}, when

(x, y) 6= (0, 0).

Remark. As we pointed out earlier, the dressing action is usually regarded as a
generalization of the coadjoint action. In the present case, we can see easily that
the dressing orbits in H̃ are exactly the coadjoint orbits in h̃ ∼= H̃. This illustrates
the point that the Poisson bracket on H̃ is just the linear Poisson bracket. On the
other hand, for G̃, which has a non-linear Poisson bracket, this is no longer the
case. The orbits Õr,s are different from the coadjoint orbits in g̃. Nevertheless,
we can still see close resemblance.

3. Quantum Heisenberg group algebra representations

Our main objects of study are the Hopf C∗-algebras (A,∆) and (Ã, ∆̃) con-
structed in [11]. As a C∗-algebra, A is isomorphic to a twisted group C∗-algebra.
That is, A ∼= C∗

(

H/Z,C∞(g/q), σ
)

, where H is the (2n+ 1) dimensional Heisen-
berg Lie group (see section 2) and Z is the center of H. Whereas, g = h∗ is the
dual space of the Lie algebra h of H and q = z⊥, for z ⊆ h corresponding to Z.
We denoted by σ the twisting cocycle for the group H/Z. As constructed in [11],
σ is a continuous field of cocycles g/q 3 r 7→ σr, where

(3.1) σr
(

(x, y), (x′, y′)
)

= ē
[

ηλ(r)β(x, y′)
]

.

Following the notation of the previous paper, we used: ē(t) = e(−2πi)t and ηλ(r) =
e2λr−1

2λ . The elements (x, y), (x′, y′) are group elements in H/Z.
In [11], we showed that the C∗-algebraA is a strict deformation quantization (in

the sense of Rieffel) of C∞(G), the commutative algebra of continuous functions
on G vanishing at infinity. For convenience, the deformation parameter ~ has
been fixed (~ = 1), which is the reason why we do not see it in the definition of
A. When ~ = 0 (i. e. classical limit), it turns out that σ ≡ 1. So A~=0

∼= C∞(G).
Throughout this paper (as in [11]), we write A = A~=1.
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We could also construct a “(regular) multiplicative unitary operator” U ∈
B(H ⊗ H) associated with A, in the sense of Baaj and Skandalis. Thus (A,∆)
becomes a Hopf C∗-algebra, whose comultiplication ∆ is determined by U . Similar
realization as a twisted group C∗-algebra also exists for the “extended” Hopf C∗–
algebra (Ã, ∆̃). Again, its comultiplication ∆̃ is determined by a certain regular
multiplicative unitary operator Ũ .

Actually, (A,∆) is an example of a locally compact quantum group, equipped
with the counit, antipode, and Haar weight, as constructed in [11]. We do not in-
tend to give here the correct definition of a locally compact quantum group, which
is still at a primitive stage (But see [15], [18], [29] for some recent developments.).
Since the main goal of the present paper is in the study of ∗-representations of A,
it would be rather sufficient to focus on the Hopf C∗-algebra structure of (A,∆).
For this reason, our preferred terminology throughout this paper for (A,∆) will
be the “Hopf C∗-algebra”, although much stronger notion of the “locally compact
quantum group” is still valid. Similar comments holds also for the extended Hopf
C∗-algebra (Ã, ∆̃).

From its construction, we can see that (A,∆) is at the same time a “quantum
C∞(G)” and “quantum C∗(H)”. In the previous paper [11], the first viewpoint
has been exploited: As we already mentioned, (A,∆) has been constructed as a
deformation quantization of C∞(G). The construction of the counit, antipode,
and Haar weight for (A,∆) all comes from the corresponding structures on G.

In this article, we wish to focus our attention to the second viewpoint. Recall
that A ∼= C∗

(

H/Z,C∞(g/q), σ
)

, where the twisting cocycle σ for H/Z is defined
as in (3.1). Since we may put ηλ(r) = r for λ = 0, it is a simple exercise using
Fourier inversion theorem that A ∼= C∗(H) when λ = 0 (The reader may refer to
the article [10] or [19] for the definition of a twisted group C∗-algebra.). For this
reason, we will on occasion call (A,∆) the quantum Heisenberg group C∗-algebra.

Remark. The notion of the “quantum Heisenberg group (C∗-)algebra” introduced
above is different from the notion of the “quantum Heisenberg algebra” used in
some physics literatures [9], [12]. They are different as algebras. Another signifi-
cant distinction is that ours is equipped with a (non-cocommutative) comultipli-
cation, while the other one does not consider any coalgebra structure. Hence the
slight difference in the choice of the terminologies.

The study of the ∗-representations of (A,∆) (and also of (Ã, ∆̃)) will be a
generalization of the study of the Heisenberg group representation theory (which,
by a standard result, is equivalent to the ∗-representation theory of C∗(H)). The
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topic itself is of interest to us (providing us with the properties like “quasitriangu-
larity”). But the success of the (ordinary) Heisenberg group representation theory
in various applications also suggests that this is a worthwhile topic to develop.

Before we begin our discussion, let us fix our terminology. Suppose (A,∆) is a
general Hopf C∗-algebra (in the sense of [25], [1]). By a representation of (A,∆),
we will just mean a non-degenerate ∗-representation of the C∗-algebra A on a
certain Hilbert space.

On the other hand, by a coaction of (A,∆) on a C∗-algebra B, we will mean
a non-degenerate ∗-homomorphism δB : B →M(B,A) such that

(idB ⊗∆)δB = (δB ⊗ idA)δB .

Here M(B,A) is the set {x ∈ M(B ⊗ A) : x(1M(B) ⊗ A) + (1M(B) ⊗ A)x ⊆
B⊗A}, which is a C∗-subalgebra of the multiplier algebra M(B⊗A). Similarly,
a (unitary) corepresentation of the Hopf C∗-algebra (A,∆) on a Hilbert space H
is a unitary Π ∈M

(

K(H)⊗A
)

such that:

(3.2) (id⊗∆)(Π) = Π12Π13.

Here Π12 is understood as an element in M
(

K(H)⊗A⊗A
)

such that it acts as Π
on the first and the second variables while the remaining variable is unchanged.
The notation Π13 is understood in the similar manner.

Remark. Corepresentations of (A,∆) are actually the “representations of the coal-
gebra structure on (A,∆)”. So in many articles on quantum groups, they are often
called “(unitary) representations of the locally compact quantum group (A,∆)”.
In particular, representation theory in this sense of compact quantum groups [27],
which are themselves Hopf C∗-algebras, have been neatly studied by Woronowicz
in [28]. However, note that we will use the terminologies “representations” and
“corepresentations” of a Hopf C∗-algebra in the sense defined above. This would
make things a little simpler. Moreover, this is closer to the spirit of this paper,
trying to view our (A,∆) as a quantum Heisenberg group C∗-algebra.

In our case, the C∗-algebra A is isomorphic to the twisted group C∗-algebra
C∗
(

H/Z,C∞(g/q), σ
)

. So by slightly modifying Theorem 3.3 and Proposition 3.4
of [3], we are able to obtain the representations of A from the so-called “represent-
ing pairs” (µ,Qσ). Such a pair (µ,Qσ) consists of a nondegenerate representation
µ of C∞(g/q) and a generalized projective representation Qσ of H/Z, satisfying
the following property:

(3.3) Qσ(x,y)Q
σ
(x′,y′) = µ

(

σ
(

(x, y), (x′, y′)
))

Qσ(x+x′,y+y′),

for (x, y), (x′, y′) ∈ H/Z.
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Given a representing pair (µ,Qσ), we can construct its “integrated form”. On
the dense subspace of Schwartz functions, it reads:

(3.4) π(f) =
∫

H/Z

µ
(

f(x, y; ·)
)

Qσ(x,y) dxdy.

By natural extension to the C∗-algebra level (Due to the amenability of the group
involved, there is no ambiguity. See [10].), we obtain in this way a representation
of A.

Remark. Let us from now on denote by A the dense subspace S3c(H/Z×g/q) of A,
which is the space of Schwartz functions in the (x, y; r) variables having compact
support in the r (∈ g/q) variable. This is a dense subalgebra (under the twisted
convolution) of our twisted group C∗-algebra A, and it has been used throughout
[11] (However, we should point out that our usage of A is slightly different from
that of [11]: There, A is contained in S(g), while at present we view it as functions
in the (x, y; r) variables. Nevertheless, they can be regarded as the same if we
consider these functions as operators contained in our C∗-algebra.). Similarly for
Ã, we will consider the dense subalgebra Ã of Schwartz functions in the (x, y, r, w)
variables having compact support in the r and w.

To find irreducible representations of A, let us look for some representing pairs
(µ,Qσ) consisting of irreducible µ and Qσ. Irreducible representations of the
commutative algebra C∞(g/q) are just the pointwise evaluations at r ∈ g/q.
So let us fix r ∈ g/q and the corresponding 1-dimensional representation µ of
C∞(g/q), given by µ(v) = v(r), for v ∈ C∞(g/q). Then the condition for Qσ

becomes:

Qσ(x,y)Q
σ
(x′,y′) = σ

(

(x, y), (x′, y′); r
)

Qσ(x+x′,y+y′)(3.5)

= σr
(

(x, y), (x′, y′)
)

Qσ(x+x′,y+y′).

That is, Qσ satisfies the condition for an (ordinary) projective representation of
H/Z with respect to the ordinary T–valued cocycle σr.

Using σr, we may define an extension group E of H/Z. Its underlying space
is H/Z × T and its multiplication law is given by

(x, y; θ)(x′, y′; θ′) =
(

x+ x′, y + y′; θθ′σr
(

(x, y), (x′, y′)
))

=
(

x+ x′, y + y′; θθ′ē
[

ηλ(r)β(x, y′)
])

.

Standard theory tells us that the unitary projective representations of (H/Z, σr)
come from the unitary group representations of E, which are easier to study:
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The next lemma gives us all the irreducible unitary representations of E, up to
equivalence.

Lemma 3.1. Let E be the extension group of (H/Z, σr) as defined above. Then
its irreducible unitary representations are equivalent to one of the following:

• For each (p, q) ∈ R2n, there exists a 1–dimensional representation Qp,q
defined by

Qp,q(x, y; θ) = ē(p · x+ q · y).

• There also exists an infinite dimensional representation Qr on L2(Rn)
defined by

(

Qr(x, y; θ)ξ
)

(u) = θē
[

ηλ(r)β(u, y)
]

ξ(u+ x).

Proof. Observe that E is a semi-direct product of two abelian groups X =
{(x, 0, 1) : x ∈ Rn} and Y × T = {(0, y, θ) : y ∈ Rn, θ ∈ T}. So by using
Mackey analysis, every irreducible representation of E is obtained as an “induced
representation” [8], [24], [21].

Since [E,E] = T, we have: E/[E,E] = X × Y , which is abelian. So all
the irreducible representations of E/[E,E] are one-dimensional. By lifting from
these 1-dimensional representations, we obtain the (irreducible) representations
{Qp,q}(p,q)∈R2n of E that are trivial on the commutator [E,E].

The infinite dimensional representation Qr is actually the induced representa-
tion IndEY×T,χ, where χ is the representation of Y × T defined by: χ(y, θ) = θ. It
turns out (by using standard Mackey theory) that {Qp,q}(p,q)∈R2n and Qr exhaust
all the irreducible representations of E, up to equivalence. �

We are now able to find the irreducible projective representations of (H/Z, σ).
Check equation (3.5) and we obtain the following representing pairs consisting of
irreducible µ and Qσ.

(1) (When r = 0 ∈ g/q): For each (p, q) ∈ R2n, there is a pair (µ,Qσ) given
by
• µ(v) = v(0), v ∈ C∞(g/q).
• Qσ(x, y) = ē(p · x+ q · y), (x, y) ∈ H/Z.

(2) (When r 6= 0 ∈ g/q): There is a pair (µ,Qσ) given by
• µ(v) = v(r), v ∈ C∞(g/q).
• On L2(Rn),
(

Qσ(x, y)ξ
)

(u) = ē
[

ηλ(r)β(u, y)
]

ξ(u+ x), (x, y) ∈ H/Z.
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Therefore, we obtain the following proposition. Observe the similarity between
this result and the representation theory of the Heisenberg group H or the Heisen-
berg group C∗-algebra C∗(H) (This is not surprising, given the point we made
earlier in this section.).

Proposition 3.2. Every irreducible representation of the twisted convolution al-
gebra A is equivalent to one of the following representations, which have been
obtained by integrating the representing pairs (µ,Qσ) of the preceding paragraph.

• For (p, q) ∈ R2n, there is a 1-dimensional representation πp,q of A, defined
by

πp,q(f) =
∫

f(x, y, 0)ē(p · x+ q · y) dxdy.

• For r ∈ R, there is a representation πr of A, acting on the Hilbert space
Hr = L2(Rn) and is defined by

(

πr(f)ξ
)

(u) =
∫

f(x, y, r)ē
[

ηλ(r)β(u, y)
]

ξ(u+ x) dxdy.

Since A is a dense subalgebra of our C∗-algebra A, we thus obtain all the ir-
reducible representations (up to equivalence) of A by naturally extending these
representations. We will use the same notation, πp,q and πr, for the representa-
tions of A constructed in this way.

Let us now consider the representations of the C∗-algebra Ã. They are again
obtained from representations of the dense subalgebra Ã, which have been identi-
fied with the twisted convolution algebra of functions in the (x, y, r, w) variables
(where (x, y, w) ∈ H̃/Z and r ∈ g̃/z⊥) having compact support in the r and w

variables. We may employ the same argument as above to find (up to equiva-
lence) the irreducible representations of Ã. The result is given in the following
proposition:

Proposition 3.3. The irreducible representations of Ã are obtained by naturally
extending the following irreducible representations of the dense subalgebra Ã.

• For s ∈ R, there is a 1-dimensional representation π̃s defined by

π̃s(f) =
∫

f(x, y, 0, w)ē(sw) dxdydw.

• For (p, q) ∈ R2n, there is a representation π̃p,q acting on the Hilbert space
H̃p,q = L2(R) defined by
(

π̃p,q(f)ζ
)

(d) =
∫

f(x, y, 0, w)ē(edp · x+ e−dq · y)ζ(d+ w) dxdydw.
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• For (r, s) ∈ R2, there is a representation π̃r,s acting on the Hilbert space
H̃r,s = L2(Rn) defined by

(

π̃r,s(f)ξ
)

(u) =

∫

f(x, y, r, w)ē(sw)ē
[

ηλ(r)β(u, y)
]

(e−
w
2 )nξ(e−wu+ e−wx) dxdydw.

We will use the same notation, π̃s, π̃p,q and π̃r,s, for the corresponding represen-
tations of Ã.

Proof. As before, let us first fix r ∈ g/z⊥. Look for the irreducible projective
representations of H̃/Z, with respect to the (T-valued) cocycle for H̃/Z defined
by

σ̃r :
(

(x, y, w), (x′, y′, w′)
)

7→ ē
[

e−wηλ(r)β(x, y′)
]

.

To do this, we consider the extension group Ẽ of H̃/Z, whose underlying space
is H̃/Z × T and whose multiplication law is given by

(x, y, w; θ)(x′, y′, w′; θ′) =
(

x+ ewx′, y + e−wy′, w + w′; θθ′ē
[

e−wηλ(r)β(x, y′)
])

.

Again, all the irreducible representations of Ẽ are obtained by “inducing”. Up
to equivalence, they are:

• For each s ∈ R, there exists a 1-dimensional representation Q̃s defined by

Q̃s(x, y, w; θ) = ē(sw).

• For each (p, q) ∈ R2n, there exists a representation Q̃p,q on L2(R) defined
by

(

Q̃p,q(x, y, w; θ)ζ
)

(d) = ē(edp · x+ e−dq · y)ζ(d+ w).

• For s ∈ R, there exists an infinite dimensional irreducible representation
Q̃r,s on L2(Rn) defined by

(

Q̃r,s(x, y, w; θ)ξ
)

(u) = θē(sw)ē
[

ηλ(r)β(u, y)
]

(e−
w
2 )n ξ(e−wu+ e−wx).

Vary r ∈ g/z⊥ and check the compatibility condition just like (3.5), to find the
appropriate representing pairs. Then the integrated form of these pairs will give
us the irreducible representations of Ã, which are stated in the proposition. �

As in the case of Proposition 3.2 (for the C∗-algebra A), we can see clearly the
similarity between the result of Proposition 3.3 and the representation theory of
the ordinary group C∗-algebra C∗(H̃). Indeed, except when we study later the
notion of “inner tensor product representations” (taking advantage of the Hopf
structures of A and Ã), the representation theories of A and Ã are very similar
to those of C∗(H) and C∗(H̃).
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In this light, it is interesting to observe that the irreducible representations of
A and Ã are in one-to-one correspondence with the dressing orbits (calculated in
section 2) in G and G̃, respectively. To emphasize the correspondence, we used
the same subscripts for the orbits and the related irreducible representations. In
this paper, we will point out this correspondence only. However, it is still true (as
in the ordinary Lie group representation theory) that orbit analysis sheds some
helpful insight into the study of quantum group representations.

In the following, we give a useful result about the irreducible representations
of Ã and those of A. This has been motivated by the orbit analysis, and it is
an analog of a similar result for the group representations of H̃ and H. See the
remark following the proposition.

Definition 2. Suppose we are given a representation π̃ of Ã. Since it is essentially
obtained from a representation Q̃ of Ẽ, we may consider its restriction Q̃|E to E.
Let us denote by π̃|A the representation of A corresponding to the representation
Q̃|E of E. In this sense, we will call π̃|A the restriction to A of the representation
π̃.

Proposition 3.4. Let the notation be as above and consider the restriction to A
of the irreducible representations of Ã. We then have:

π̃r,s|A = πr and π̃p,q|A =
∫ ⊕

R
πewp,e−wq dw.

Here
∫ ⊕
R denotes the direct integral ([6]) of representations.

Proof. For any ξ ∈ H̃r,s = L2(Rn), we have:
(

Q̃r,s|E(x, y; θ)ξ
)

(u) = θē
[

ηλ(r)β(u, y)
]

ξ(u+ x) =
(

Qr(x, y; θ)ξ
)

(u).

It follows that π̃r,s|A = πr. Next, for any ζ ∈ H̃p,q = L2(R),
(

Q̃p,q|E(x, y; θ)ζ
)

(w) = ē(ewp · x+ e−wq · y)ζ(w) =
(

Qewp,e−wq(x, y; θ)ζ
)

(w).

By definition of the direct integrals, we thus obtain:

Q̃p,q|E =
∫ ⊕

R
Qewp,e−wq dw.

It follows that: π̃p,q|E =
∫ ⊕
R πewp,e−wq dw. �

Remark. This result has to do with the fact that E is a normal subgroup of Ẽ with
codimension 1. Compare this result with Theorem 6.1 of Kirillov’s fundamental
paper [13] or the discussion in section 2.5 of [5], where the analysis of coadjoint
orbits was used to obtain a similar result for the representations of ordinary Lie
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groups. Although we proved this proposition directly, this strongly indicates the
possibility of formulating the proposition via generalized (dressing) orbit theory.

So far we have considered only the representations of A and Ã. In this article,
we are not going to discuss the corepresentations of (A,∆) (or of (Ã, ∆̃)). In fact,
it turns out that the corepresentation theory is equivalent to the representation
theory of the dual group G. This is a by-product of the Hopf C∗-algebra duality
between (A,∆) and (C∗(G), ∆̂), provided by the “regular” multiplicative unitary
operator U associated with (A,∆) (The definition of ∆̂ depends on U .). Since
this is the case, the corepresentation theory of (A,∆) is actually simpler.

4. Inner tensor product of representations

Given any two representations of a Hopf C∗-algebra (B,∆), we can define
their “(inner) tensor product” [7, §10], [4, §5] as in the below. There is also a
corresponding notion for corepresentations. But in the present article, we will not
consider this dual notion.

Definition 3. Let π and ρ be representations of a Hopf C∗-algebra (B,∆), acting
on the Hilbert spaces Hπ and Hρ. Then their inner tensor product , denoted by
π � ρ, is a representation of B on Hπ ⊗Hρ defined by

(π � ρ)(b) = (π ⊗ ρ)
(

∆(b)
)

, b ∈ B.

Here π ⊗ ρ denotes the (outer) tensor product of the representations π and ρ,
which is a representation of B ⊗B naturally extended to M(B ⊗B).

As the name suggests, this notion of inner tensor product is a generalization of
the inner tensor product of group representations [8]. For instance, in the case of
an ordinary group C∗-algebra C∗(G) equipped with its cocommutative (symmet-
ric) comultiplication ∆0, Definition 3 is just the integrated form version of the
inner tensor product group representations. In this case, since ∆0 is cocommu-
tative, the flip σ : Hπ ⊗Hρ → Hρ ⊗Hπ provides a natural intertwining operator
between π � ρ and ρ� π.

For general (non-cocommutative) Hopf C∗-algebras, however, this is not nec-
essarily true. In general, π�ρ need not even be equivalent to ρ�π. Thus for any
Hopf C∗-algebra (or quantum group), it is an interesting question to ask whether
two inner tensor product representations π� ρ and ρ�π are equivalent and if so,
what the intertwining unitary operator between them is.

When a Hopf C∗-algebra is equipped with a certain “quantum universal R-
matrix” ([7], [4], and Definitions 6.1, 6.2 of [11] for the C∗-algebra version), we
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can give positive answers to these questions. The following result is relatively well
known:

Proposition 4.1. Let (B,∆) be a Hopf C∗-algebra. Suppose that there exists a
quantum universal R-matrix R ∈M(B⊗B) for B. Then given any two represen-
tations π and ρ of B on Hilbert spaces Hπ and Hρ, their inner tensor products
π � ρ and ρ � π are equivalent. The equivalence is established by the (unitary)
intertwining operator Tπρ : Hπ ⊗Hρ → Hρ ⊗Hπ, defined by

Tπρ = σ ◦ (π ⊗ ρ)(R).

Here π ⊗ ρ is understood as the natural extension to M(B ⊗ B) of the tensor
product π ⊗ ρ : B ⊗B → B(Hπ ⊗Hρ) and σ is the flip. That is,

Tπρ
(

(π � ρ)(b)
)

=
(

(ρ� π)(b)
)

Tπρ, b ∈ B.

Furthermore, if the R-matrix is triangular, then we also have:

TρπTπρ = IHπ⊗Hρ and TπρTρπ = IHρ⊗Hπ .

Proof. Let us first calculate how Tπρ acts as an operator. If ζ1 ∈ Hπ and
ζ2 ∈ Hρ, we have:

Tπρ(ζ1 ⊗ ζ2) = σ ◦
(

(π ⊗ ρ)(R)
)

(ζ1 ⊗ ζ2) =
(

(ρ⊗ π)(R21)
)

(ζ2 ⊗ ζ1).

Note that we have Tπρ =
(

(ρ⊗ π)(R21)
)

◦ σ, as an operator. Here, R21 = G ◦R.
To verify that Tπρ is an intertwining operator between π � ρ and ρ � π, let us
consider an element b ∈ B. Then

Tπρ
(

(π � ρ)(b)
)

= Tπρ
(

(π ⊗ ρ)(∆b)
)

=
(

(ρ⊗ π)(R21)
)(

(ρ⊗ π)(∆opb)
)

◦ σ

=
(

(ρ⊗ π)(R21∆opb)
)

◦ σ.

From R∆(b)R−1 = ∆op(b), we have: R21∆op(b)R−1
21 = ∆(b). It follows that

Tπρ
(

(π � ρ)(b)
)

=
(

(ρ⊗ π)(∆(b)R21)
)

◦ σ =
(

(ρ⊗ π)(∆b)
)(

(ρ⊗ π)(R21)
)

◦ σ

=
(

(ρ� π)(b)
)

Tπρ.

Furthermore, if R is triangular (so by definition σ ◦R = R21 = R−1), then,

TρπTπρ(ζ1 ⊗ ζ2) =
(

(π ⊗ ρ)(R21)
)(

(π ⊗ ρ)(R)
)

(ζ1 ⊗ ζ2)

=
(

(π ⊗ ρ)(R21R)
)

(ζ1 ⊗ ζ2) = (ζ1 ⊗ ζ2).

Since this is true for arbitrary ζ1 ∈ Hπ and ζ2 ∈ Hρ, we have: TρπTπρ = IHπ⊗Hρ .
�
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In [11, §6], we showed that the “extended” Hopf C∗-algebra (Ã, ∆̃) has a
quasitriangular quantum universal R-matrix R ∈ M(Ã ⊗ Ã). From this the
following Corollary is immediate.

Corollary 4.2. For the Hopf C∗-algebra (Ã, ∆̃), any two representations π̃ and
ρ̃ of Ã will satisfy:

π̃ � ρ̃ ∼= ρ̃� π̃.

By Proposition 4.1, the operator Tπ̃ρ̃ = σ ◦ (π̃⊗ ρ̃)(R) is an intertwining operator
for this equivalence.

Unlike (Ã, ∆̃), however, the Hopf C∗-algebra (A,∆) does not have its own
quantum R-matrix RA ∈ M(A ⊗ A). Even at the classical, Lie bialgebra level
(studied in [11, §1]), we can see that the Poisson structures we consider cannot
be obtained from any classical r-matrix. Because of this, the result like the above
Corollary is not automatic for (A,∆). Even so, we plan to show in the below that
the representations of (A,∆) still satisfy the quasitriangular type property.

For this purpose and for possible future use, we are going to calculate here the
inner tensor product representations of our Hopf C∗-algebra (A,∆). Since it is
sufficient to consider the inner tensor products of irreducible representations, let
us keep the notation of the previous section and let {πp,q}(p,q)∈R2n and {πr}r∈R
be the irreducible representations of A. Similarly, let {π̃s}s∈R, {π̃p,q}(p,q)∈R2n ,
{πr,s}(r,s)∈R2 be the irreducible representations of Ã. For convenience, we will
calculate the inner tensor product representations at the level of our dense sub-
algebra of functions, A.

Let f ∈ A and consider ∆f . To carry out our calculations, it is convenient
to regard ∆f also as a continuous function. By using the definition of ∆ (given
in Theorem 3.2 of [11]) and by using Fourier transform purely formally with the
Fourier inversion theorem, it is not difficult to realize ∆f as a function in the
(x, y, r) variables:

∆f(x, y, r, x′, y′, r′)

=
∫

f(x′, y′, r + r′)ē
[

p · (eλr
′
x′ − x) + q · (eλr

′
y′ − y)

]

dpdq.

Note that in the (p, q, r) (∈ G) variables, it is just:

∆f(p, q, r, p′, q′, r′) = f(eλr
′
p+ p′, eλr

′
q + q′, r + r′),

which more or less reflects the multiplication law on G.
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We can now explicitly calculate the inner tensor products of irreducible repre-
sentations of A, by (π � ρ)(f) = (π ⊗ ρ)(∆f). We first begin with 1-dimensional
representations.

Proposition 4.3. For two 1-dimensional representations πp,q and πp′,q′ of A, we
have: πp,q � πp′,q′ = πp+p′,q+q′ . From this, it follows that:

πp,q � πp′,q′ = πp+p′,q+q′ = πp′,q′ � πp,q.

Proof. We have for any f ∈ A,

(πp,q � πp′,q′)(f) =
∫

f(x′, y′, 0)ē
[

p̃ · (x′ − x) + q̃ · (y′ − y)
]

ē[p · x+ q · y]ē[p′ · x′ + q′ · y′] dp̃dq̃dxdydx′dy′

=
∫

f(x, y, 0)ē
[

(p+ p′) · x+ (q + q′) · y
]

dxdy

= πp+p′,q+q′(f).

�

For other cases involving infinite dimensional (irreducible) representations, the
equivalence between the inner tensor products is not so apparent. However, the
inner tensor products of πp,q and πr has a property of being equivalent to the
infinite dimensional representation πr itself. So in this case, equivalence between
the inner tensor products follows rather easily.

Proposition 4.4. Consider a 1-dimensional representation πp,q and an infinite
dimensional representation πr of A. Their inner tensor product is equivalent to
the irreducible representation πr. We thus have:

πr � πp,q ∼= πr ∼= πp,q � πr.

Proof. For ξ ∈ Hr ⊗Hp,q ∼= L2(Rn)⊗ C ∼= L2(Rn) and for f ∈ A, we have:

(

(πr � πp,q)(f)ξ
)

(u) =
∫

f(x′, y′, r)ē
[

p̃ · (x′ − x) + q̃ · (y′ − y)
]

ē
[

ηλ(r)β(u, y)
]

ē[p · x′ + q · y′]ξ(u+ x) dp̃dq̃dxdydx′dy′

=
∫

f(x, y, r)ē[p · x+ q · y]ē
[

ηλ(r)β(u, y)
]

ξ(u+ x) dxdy.
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Similarly for ξ ∈ Hp,q ⊗Hr ∼= L2(Rn),

(

(πp,q � πr)(f)ξ
)

(u) =

∫

f(x′, y′, r)ē
[

p̃ · (eλrx′ − x) + q̃ · (eλry′ − y)
]

ē[p · x+ q · y]ē
[

ηλ(r)β(u, y′)
]

ξ(u+ x′) dp̃dq̃dxdydx′dy′

=

∫

f(x, y, r)ē
[

eλrp · x+ eλrq · y
]

ē
[

ηλ(r)β(u, y)
]

ξ(u+ x) dxdy.

Before proving πr�πp,q ∼= πp,q�πr, let us show the equivalence πr⊗πp,q ∼= πr.
This equivalence is suggested by the corresponding result at the level of Heisenberg
Lie group representation theory, which is obtained by using the standard analysis
via “characters” [14], [5]. In our case, the equivalence is established by the inter-
twining operator S : L2(Rn)→ L2(Rn) defined by: Sξ(u) = ē(p ·u)ξ

(

u− q
ηλ(r)

)

.
Indeed for f ∈ A,

S
(

(πr � πp,q)(f)
)

ξ(u) =
∫

ē(p · u)f(x, y, r)ē[p · x+ q · y]

ē

[

ηλ(r)β
(

u− q

ηλ(r)
, y

)]

ξ

(

u− q

ηλ(r)
+ x

)

dxdy,

and

(

πr(f)
)

Sξ(u) =
∫

f(x, y, r)ē
[

ηλ(r)β(u, y)
]

ē
[

p · (u+ x)
]

ξ

(

u+ x− q

ηλ(r)

)

dxdy.

We thus have: S
(

(πr�πp,q)(f)
)

=
(

πr(f)
)

S, proving the equivalence: πr�πp,q ∼=
πr. It is easy to check that S−1 gives the intertwining operator for the equivalence:
πr ∼= πr � πp,q.

Meanwhile, from the explicit calculations given at the beginning of the proof,
it is apparent that we have: πp,q � πr = πr � πeλrp,eλrq. We thus obtain the
equivalence: πp,q � πr ∼= πr, via the intertwining operator similar to the above
S, replacing p and q with eλrp and eλrq. Combining these results, we can find
the intertwining operator T : L2(Rn)→ L2(Rn) between πr � πp,q and πp,q � πr,
obtained by multiplying the respective intertwining operators for the equivalences
πr � πp,q ∼= πr and πr ∼= πp,q � πr. By straightforward calculation, we have the
following expression for T :

Tξ(u) = ē

[

p · u− eλrp ·
(

u− q

ηλ(r)
+

eλrq

ηλ(r)

)]

ξ

(

u− q

ηλ(r)
+

eλrq

ηλ(r)

)

.

It is clear that T−1 gives the intertwining operator between πp,q � πr and πr �
πp,q. �
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So far nothing very interesting has happened, in the sense that the results
are similar to those of the Heisenberg group representation theory. However, a
breakdown of this analogy occurs when we consider inner tensor products of two
infinite dimensional representations πr and πr′ . Let us first prove the equivalence
of πr � πr′ and πr′ � πr.

Proposition 4.5. Consider a pair (πr, π′r) of two infinite dimensional irreducible
representations of A. Then we have:

πr � πr′ ∼= πr′ � πr,

where the equivalence between them is given by the intertwining operator Tπrπr′ :
L2(R2n)→ L2(R2n) defined by

Tπrπr′ ξ(v, u) = (e
−λr

2 )n(e−
λr′
2 )n ξ

(

e−λr
′
u+ (eλr

′
− e−λr

′
)e−λrv, e−λrv

)

.

Proof. Let f ∈ A. For ξ ∈ Hr ⊗Hr′ ∼= L2(R2n), we have:
(

(πr � πr′)(f)ξ
)

(u, v)

=
∫

f(x′, y′, r + r′)ē
[

p̃ · (eλr
′
x′ − x) + q̃ · (eλr

′
y′ − y)

]

ē
[

ηλ(r)β(u, y)
]

ē
[

ηλ(r′)β(v, y′)
]

ξ(u+ x, v + x′) dp̃dq̃dxdydx′dy′

=
∫

f(x, y, r + r′)ē
[

ηλ(r)β(u, eλr
′
y)
]

ē
[

ηλ(r′)β(v, y)
]

ξ(u+ eλr
′
x, v + x) dxdy.

Similarly for ξ ∈ Hr′ ⊗Hr ∼= L2(R2n), by interchanging the roles of r and r′,
(

(πr′ � πr)(f)ξ
)

(v, u) =
∫

f(x, y, r + r′)ē
[

ηλ(r′)β(v, eλry)
]

ē
[

ηλ(r)β(u, y)
]

ξ(v + eλrx, u+ x) dxdy.

To prove the equivalence between πr � πr′ and πr′ � πr, it is useful to recall
the fact that any two representations π̃ and ρ̃ of the “extended” Hopf C∗–algebra
(Ã, ∆̃) satisfy: π̃ � ρ̃ ∼= ρ̃ � π̃. In particular, we would have: π̃r,0 � π̃r′,0 ∼=
π̃r′,0 � π̃r,0. Its intertwining operator is: Tπ̃r,0π̃r′,0 = σ ◦

(

(π̃r,0 ⊗ π̃r′,0)(R)
)

, by
Corollary 4.2 of Proposition 4.1. By restriction to A (in the sense of Definition
2), we obtain:

(π̃r,0|A)� (π̃r′,0|A) ∼= (π̃r′,0|A)� (π̃r,0|A),

which, by Proposition 3.4, is just: πr � πr′ ∼= πr′ � πr.
To find the intertwining operator for this equivalence, let us find an explicit

expression for the operator Tπ̃r,0π̃r′,0 . Recall first that by equation (6.3) and Def-
inition 6.3 of [11], the quantum R-matrix for (Ã, ∆̃) is considered as a continuous
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function defined by:

R(p, q, r, s, p′, q′, r′, s′) = Φ(p, q, r, s, p′, q′, r′, s′)Φ′(p, q, r, s, p′, q′, r′, s′)

= ē
[

λ(rs′ + r′s)
]

ē
[

2λ(e−λr
′
)p · q′

]

.

We then calculate (π̃r,0⊗ π̃r′,0)(R) as an operator on H̃r,0⊗H̃r′,0 ∼= L2(R2n). By
a straightforward calculation, we obtain for ξ ∈ L2(R2n),

(

(π̃r,0 ⊗ π̃r′,0)(Φ)ξ
)

(u, v)

=
∫

ē
[

λ(rs′ + r′s)
]

e[p · x+ q · y + sw + p′ · x′ + q′ · y′ + s′w′]

(e−
w
2 )n(e−

w′
2 )n ξ(e−wu+ e−wx, e−w

′
v + e−w

′
x′)

ē
[

ηλ(r)β(u, y)
]

ē
[

ηλ(r′)β(v, y′)
]

dpdqdsdp′dq′ds′dxdydwdx′dy′dw′

= (e−
λr
2 )n(e−

λr′
2 )n ξ(e−λr

′
u, e−λrv).

Similarly,
(

(π̃r,0 ⊗ π̃r′,0)(Ψ)ξ
)

(u, v) = ξ(u+ 2λe−λr
′
ηλ(r′)v, v).

Since ηλ(r′) = e2λr
′
−1

2λ , we thus have:
(

(π̃r,0 ⊗ π̃r′,0)(R)ξ
)

(u, v) =
(

(π̃r,0 ⊗ π̃r′,0)(Φ)
)(

(π̃r,0 ⊗ π̃r′,0)(Ψ)
)

ξ(u, v)

= (e
−λr

2 )n(e−
λr′
2 )nξ

(

e−λr
′
u+ (eλr

′
− e−λr

′
)e−λrv, e−λrv

)

.

By applying the flip σ, we therefore obtain:

Tπ̃r,0π̃r′,0ξ(v, u) = σ ◦
(

(π̃r,0 ⊗ π̃r′,0)(R)
)

ξ(v, u)

= (e−
λr
2 )n(e−

λr′
2 )nξ

(

e−λr
′
u+ (eλr

′
− e−λr

′
)e−λrv, e−λrv

)

.

Define Tπrπr′ by Tπrπr′ = Tπ̃r,0π̃r′,0 . Then it is a straightforward calculation to
show that Tπrπr′ is an intertwining operator between πr � πr′ and πr′ � πr. For
f ∈ A and ξ ∈ L2(R2n), we have:

Tπrπr′
(

(πr � πr′)(f)
)

ξ(v, u)

=

∫

f(x, y, r + r′)ē
[

ηλ(r)β(e−λr
′
u+ (eλr

′
− e−λr

′
)e−λrv, eλr

′
y)
]

ē
[

ηλ(r′)β(e−λrv, y)
]

(e
−λr

2 )n(e−
λr′
2 )nξ(e−λr

′
u+ (eλr

′
− e−λr

′
)e−λrv + eλr

′
x, e−λrv + x) dxdy

=
(

(πr′ � πr)(f)
)

Tπrπr′ ξ(v, u).

Since ξ is arbitrary, it follows that:

Tπrπr′
(

(πr � πr′)(f)
)

=
(

(πr′ � πr)(f)
)

Tπrπr′ .

�
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Observe that by interchanging r and r′, we are able to find the expression for
the intertwining operator Tπr′πr :

Tπr′πrξ(u, v) = (e
−λr

2 )n(e−
λr′
2 )n ξ

(

e−λrv + (eλr − e−λr)e−λr
′
u, e−λr

′
u
)

.

For f ∈ A, we will have: Tπ′rπr
(

(πr′ � πr)(f)
)

=
(

(πr � πr′)(f)
)

Tπ′rπr .
However, note that unlike in the ordinary group representation theory or in

the cases equipped with “triangular” quantum R-matrices, we no longer have:
Tπr′πrTπrπr′ = I. We instead have:

Tπr′πrTπrπr′ ξ(u, v) = (e−λr)n(eλr
′
)n ξ

(

u− (1− e−2λr′)e−2λru+ (eλr
′
− e−λr

′
)e−2λrv,

e−2λrv + (1− e−2λr)e−λr
′
u
)

,

which is clearly not the identity operator. Let us summarize our results in the
following theorem:

Theorem 4.6. Given any two representations π and ρ (acting on the Hilbert
spaces Hπ and Hρ) of the Hopf C∗-algebra (A,∆), their inner tensor products
“commutes” (i. e. π � ρ and ρ � π are equivalent). However, the intertwining
operators Tπρ and Tρπ are in general not inverses of each other (i. e. TρπTπρ 6=
IHπ⊗Hρ).

This theorem means that the category of representations of (A,∆) is essen-
tially a “quasitriangular monoidal category” (See [4, §15] or [2]). In our case, it is
interesting to point out that (A,∆) possesses the quasitriangular type property
without the existence of its own quantum R-matrix RA. Meanwhile, since there
have been only a handful of examples so far of non-compact, C∗-algebraic quan-
tum groups possessing the property of quasitriangularity, having these examples
(A,∆) and (Ã, ∆̃) would benefit the study of non-compact quantum groups and
its development.
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