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Abstract. In the general theory of locally compact quantum groups, the
notion of Haar measure (Haar weight) plays the most significant role. The
aim of this paper is to carry out a careful analysis regarding Haar weight,
in relation to general theory, for the specific non-compact quantum group
(A,1) constructed earlier by the author. In this way, one can show that
(A,1) is indeed a “(C∗-algebraic) locally compact quantum group” in
the sense of the recently developed definition given by Kustermans and
Vaes. Attention will be given to pointing out the relationship between
the original construction (obtained by deformation quantization) and the
structure maps suggested by general theory.
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0. Introduction

According to the widely accepted paradigm (which goes back to Gelfand
and Naimark in the 1940’s and has been reaffirmed by Connes and his
non-commutative geometry program [5]) thatC∗-algebras are quantized/non-
commutative locally compact spaces, theC∗-algebra framework is the most
natural one in which to formulate a theory oflocally compact quantum
groups. There have been several examples ofC

∗-algebraic quantum groups
constructed, beginning with Woronowicz’s (compact) quantumSU(2) group
[25]. The examples of non-compactC∗-algebraic quantum groups have been
rather scarce, but significant progress has been made over the past decade.

Among the examples of non-compact type is the HopfC

∗-algebra(A,1)
constructed by the author [8]. The construction is done by the method of
deformation quantization, and the approach is a slight generalization of the one

∗The author wishes to thank Professor George Elliott, for his kind and helpful
comments on the early draft of this paper.
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used in Rieffel’s example of a solvable quantum group [19]. In fact,(A,1)

may be regarded as a “quantizedC∗

(H)” or a “quantizedC0(G)”, whereH is
a Heisenberg-type Lie group andG is a certain solvable Lie group carrying a
non-linear Poisson structure.

Motivation for choosing suitable comultiplication, counit, antipode (coin-
verse), and Haar weight on(A,1) comes from the information at the level
of Poisson–Lie groups. The proofs were given by introducing some tools like
the multiplicative unitary operator. In this way, we could argue that(A,1),
together with its additional structure maps, should be an example of anon-
compact quantum group.

We further went on to find a “quantum universalR-matrix” type operator
related with(A,1) and studied its representation theory, indicating that the∗-
representations ofA satisfy an interesting “quasitriangular” type property. See
[8] and [9] (More discussion on the representation theory is given in [10].).

However, even with these strong indications suggested by our construction
and the representation theoretic applications, we did not quite make it clear
whether(A,1) actually is a locally compact (C∗-algebraic) quantum group.
For instance, in [8], the discussion about the Haar weight on(A,1) was
rather incomplete, since we restricted our discussion to the level of a dense
subalgebra of theC∗-algebraA. Even for the (simpler) example of Rieffel’s
[19], the full construction of its Haar weight was not carried out. The problem
of tying together these loose ends and establishing(A,1) as a locally compact
quantum group in a suitable sense was postponed to a later occasion.

Part of the reason for the postponement was due to the fact that at the
time of writing, the question of the correct definition of a locally compact
quantum group had not yet been settled. It was known that simply requiring
the existence of a counit and an antipode on the “locally compact quantum
semigroup”(A,1) is not enough. Some proposals had been made, but they
were at a rather primitive stage. Recently, the situation has improved: A new
paper by Kustermans and Vaes [14] appeared, in which they give a relatively
simple definition of a (reduced)C∗-algebraic quantum group.

In this new definition, the existence of a left invariant (Haar) weight and
a right invariant weight plays the central role. In particular, they do not have
to include the existence of the antipode and its polar decomposition in their
axioms. Unlike the axiom sets of Masuda and Nakagami [15], or those for
Kac algebras [6], which are either too complicated or too restrictive, these
properties and others can be proved from the defining axioms. We are still far
from achieving the goal of formulating a set of axioms in which we do not have
to invoke the existence of Haar measure. Considering this, it seems that the
definition of Kustermans and Vaes is the most reasonable choice at this moment.

Now that we have an acceptable definition, we are going to return to our
example(A,1) and verify that(A,1) is indeed a locally compact quantum
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group. Our discussion will begin in Section 1 by describing the definition of
Kustermans and Vaes, making precise the notion of a “C

∗-algebraic locally
compact quantum group”.

In section 2, we summarize a few results about our specific example(A,1).
Instead of repeating our construction carried out in [8], we take a more econom-
ical approach of describing results by relying less on the Poisson geometric
aspects.

In section 3, which is the main part of this paper, we describe the Haar
weight for(A,1) and make the notion valid in theC∗-algebra setting. Having
the correct left/right invariant weights enables us to conclude that(A,1) is
indeed a non-compactC∗-algebraic quantum group. We are benefiting a lot
from being able to work with our specific example having a tracial weight, but
many of the techniques being used here are not necessarily type-specific, and
therefore, will be also useful in more general cases: Our discussion on the left
invariance of Haar measure is strongly motivated by the new and attractive
approach of Van Daele [23], [24].

In Sections 4 and 5, we say a little about the antipode and the modular func-
tion of (A,1). By comparing our original definitions (motivated by Poisson–
Lie group data) with the ones suggested by the general theory, we wish to give
some additional perspectives on these maps.

For the discussion to be complete, we need a description of the dual coun-
terpart to(A,1). We included a very brief discussion of( ˆ

A,

ˆ

1) at the end of
Section 2, and also added a short Appendix (Section 6). For a more careful
discussion on the dual, see [11]. Meanwhile, we plan to pursue in our future
papers the discussion on the quantum double, as well as the research on the
duality of quantum groups in relation to the Poisson duality at the level of their
classical limit.

As a final remark, we point out that while our original construction of
(A,1) was by deformation quantization of Poisson–Lie groups, it can be also
approached algebraically using the recent framework of “twisted bicrossed
products” of Vaes and Vainerman [22]. While we do believe in the advantage
of the more constructive approach we took in [8] motivated by Poisson–Lie
groups (especially in applications involving quantizations or representation
theory, as in [9], [10]), complementing it with the more theoretical approach
presented here will make our understanding more comprehensive.

1. Definitions, terminologies, and conventions

1.1 Weights onC∗-algebras

We will begin by briefly reviewing the theory of weights onC∗-algebras. The
purpose is to make clear the notations used in the main definition of aC

∗-
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algebraic quantum group (Definition 1.2) and in the proofs in later sections.
For a more complete treatment and for standard terminologies on weights,
refer to [3]. For instance, recall the standard notations likeN

ϕ

, M
ϕ

, M
ϕ

+, . . .
associated to a weightϕ (on aC∗-algebraA). That is,

• N

ϕ

= {a ∈ A : ϕ(a∗

a) < ∞}

• M

ϕ

+

= {a ∈ A

+ : ϕ(a) < ∞}

• M

ϕ

= N

∗

ϕ

N

ϕ

The weights we will be considering are “proper weights”: A proper weight
is a non-zero, densely defined weight on aC∗-algebra, which is lower semi-
continuous [14].

If we are given a (proper) weightϕ on aC∗-algebra, we can define the sets
F

ϕ

andG

ϕ

by

F

ϕ

= {ω ∈ A

∗

+

: ω(x) ≤ ϕ(x), ∀x ∈ A

+

}

G

ϕ

= {αω : ω ∈ F

ϕ

, α ∈ (0, 1)} ⊆ F

ϕ

.

HereA∗ denotes the norm dual ofA.
These sets have been introduced by Combes, and they play a significant

role in the theory of weights. Note that onF
ϕ

, one can give a natural order
inherited fromA∗

+

. Meanwhile,G
ϕ

is a directed subset ofF
ϕ

. That is, for every
ω1, ω2 ∈ G

ϕ

, there exists an elementω ∈ G

ϕ

such thatω1, ω2 ≤ ω. Because
of this,G

ϕ

is often used as an index set (of a net). For a proper weightϕ, we
would have:ϕ(x) = lim(ω(x))

ω∈G

ϕ

, for x ∈ A

+.
By standard theory, for a weightϕ on aC∗-algebraA, one can associate to it

a “GNS-construction”(H
ϕ

, π

ϕ

,3

ϕ

). Here,H
ϕ

is a Hilbert space,3
ϕ

: N

ϕ

→

H

ϕ

is a linear map such that3
ϕ

(N

ϕ

) is dense inH
ϕ

and〈3

ϕ

(a),3

ϕ

(b)〉 =

ϕ(b

∗

a) for a, b ∈ N

ϕ

, andπ
ϕ

is a representation ofA on H

ϕ

defined by
π

ϕ

(a)3

ϕ

(b) = 3

ϕ

(ab) for a ∈ A, b ∈ N

ϕ

. The GNS-construction is unique
up to a unitary transformation.

If ϕ is proper, thenN
ϕ

is dense inA and3
ϕ

: N

ϕ

→ H

ϕ

is a closed map.
Alsoπ

ϕ

: A → B(H

ϕ

) is a non-degenerate∗-homomorphism. It is not difficult
to show thatϕ has a natural extension to a weight onM(A), which we will
still denote byϕ. Meanwhile, since we can define for everyω ∈ G

ϕ

a unique
elementω̃ ∈ π

ϕ

(A)

′′

∗

such thatω̃ ◦ π

ϕ

= ω, we can define a weight̃ϕ on the
von Neumann algebraπ

ϕ

(A)

′′ in the following way:ϕ̃(x) = lim(ω̃(x))
ω∈G

ϕ

,
for x ∈ (π

ϕ

(A)

′′

)

+. Then, by standard terminology [21],ϕ̃ is a “normal”,
“semi-finite” weight on the von Neumann algebraπ

ϕ

(A)

′′.
Motivated by the properties of normal, semi-finite weights on von Neumann

algebras, and to give somewhat of a control over the non-commutativity ofA,
one introduces the notion of “KMS weights” [12]. The notion as defined below
is slightly different from (but equivalent to) the original one given by Combes
in [4].
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Definition 1.1. A proper weightϕ is called a “KMS weight” if there exists
a norm-continuous one-parameter group of automorphismsσ ofA such that

(1) ϕ ◦ σ

t

= ϕ, for all t ∈ R.
(2) ϕ(a∗

a) = ϕ(σ

i/2(a)σi/2(a)
∗

), for all a ∈ D(σ

i/2).

Hereσ
i/2 is the analytic extension of the one-parameter groupσ

t

to i

2.

The one-parameter groupσ is called the “modular automorphism group” for
ϕ. It is uniquely determined whenϕ is faithful. Meanwhile, a proper weightϕ is
said to be “approximately KMS” if the associated (normal, semi-finite) weight
ϕ̃ is faithful. A KMS weight is approximately KMS. For more discussion on
these classes of weights, including the relationship between the conditions
above and the usual KMS condition, see [12]. Finally, note that in the special
case whenϕ is a trace (i. e.ϕ(a∗

a) = ϕ(aa

∗

), for a ∈ N

ϕ

), it is clear thatϕ is
KMS. The modular automorphism group will be trivial (≡ Id).

1.2 Definition of a locally compact quantum group

LetA be aC∗-algebra. Suppose1 : A → M(A⊗ A) is a non-degenerate∗-
homomorphism (Later,1 will be given certain conditions for it to become a
comultiplication.). A proper weightϕ on(A,1)will be calledleft invariant, if

ϕ((ω ⊗ id)(1a)) = ω(1)ϕ(a), (1.1)

for all a ∈ M

ϕ

+ andω ∈ A

∗

+

. Similarly,ϕ is calledright invariant, if

ϕ((id ⊗ω)(1a)) = ω(1)ϕ(a). (1.2)

By ω(1), we mean‖ω‖. Note here that we used the extensions ofϕ toM(A)
in the equations, since we only know that(ω ⊗ id)(1a) ∈ M(A)

+. In the
definition of locally compact quantum groups (to be given below), the “slices”
of 1a will be assumed to be contained inA.

In the definitions above, the left [respectively, right] invariance condition
requires the formula (1.1) to hold only fora ∈ M

ϕ

+. It is a very weak form of
left invariance. In the case of locally compact quantum groups, the result can
be extended and a much stronger left invariance condition can be proved from
it. The proof is non-trivial. It was one of the important contributions made by
Kustermans and Vaes.

Next, let us state the definition of a locally compact (C

∗-algebraic) quantum
group given by Kustermans and Vaes [14]. In the definition, [X] denotes the
closed linear span ofX.

Definition 1.2. Consider a C∗-algebra A and a non-degenerate∗-
homomorphism1 : A → M(A⊗ A) such that
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(1) (1⊗ id)1 = (id ⊗1)1

(2) [{(ω ⊗ id)(1a) : ω ∈ A

∗

, a ∈ A}] = A

(3) [{(id ⊗ω)(1a) : ω ∈ A

∗

, a ∈ A}] = A

Moreover, assume that there exist weightsϕ andψ such that

• ϕ is a faithful, left invariant approximate KMS weight on(A,1).
• ψ is a right invariant approximate KMS weight on(A,1).

Then we say that(A,1) is a (reduced)C∗-algebraic quantum group.

First condition is the “coassociativity” condition for the “comultiplication”
1. By the non-degeneracy, it can be naturally extended toM(A) [we can
also extend(1⊗ id) and(id ⊗1)], thereby making the expression valid. The
two density conditions more or less correspond to the cancellation property
in the case of ordinary groups, although they are somewhat weaker. The last
axiom corresponds to the existence of Haar measure (The weightsϕ andψ
actually turn out to be faithful KMS weights.). For more on this definition (e. g.
discussions on how one can build other structure maps like the antipode), see
[14].

2. The HopfC∗-algebra (A,1)

Our main object of study is the HopfC∗-algebra(A,1) constructed in
[8]. As a C

∗-algebra,A is isomorphic to a twisted groupC∗-algebra
C

∗

(H/Z,C0(g/q), σ ), whereH is the(2n+ 1)-dimensional Heisenberg Lie
group andZ is the center ofH . Whereas,g = h

∗ is the dual space of the Lie
algebrah of H andq = z

⊥, for z ⊆ h corresponding toZ. SinceH is a nilpo-
tent Lie group,H ∼

=

h andZ ∼

=

z, as vector spaces. We denoted byσ (not
to be confused with the modular automorphism group) the twisting cocycle
for the groupH/Z. As constructed in [8],σ is a continuous field of cocycles
g/q 3 r 7→ σ

r , where

σ

r

((x, y), (x

′

, y

′

)) = ē[η
λ

(r)β(x, y

′

)]. (2.1)

Following the notation of the previous paper, we used:ē(t) = e

(−2πi)t and
η

λ

(r) =

e

2λr
−1

2λ , whereλ is a fixed real constant. We denote byβ( , ) the inner
product. The elements(x, y), (x ′

, y

′

) are group elements inH/Z.
In [8], we showed that theC∗-algebraA is a deformation quantization (in

Rieffel’s “strict” sense [18], [20]) ofC0(G), whereG is a certain solvable Lie
group which is thedual Poisson–Lie groupof H . The numberλ mentioned
above determines the group structure ofG (Whenλ = 0, the groupG becomes
abelian, which is not very interesting.). See Definition 1.6 of [8] for the precise
definition ofG. For convenience, we fixed the deformation parameter as~ = 1.
This is the reason why we do not see it in the definition ofA. If we wish to
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illustrate the deformation process, we may just replaceβ by~β, and let~ → 0.
When~ = 0 (i. e. classical limit), we haveσ ≡ 1, and hence,A

~=0
∼

=

C0(G).
Throughout this paper, we will just work withA = A

~=1.
Let us be a little more specific and recall some of the notations and results

obtained in [8], while referring the reader to that paper for more details on the
construction of our main example(A,1).

We first introduce the subspaceA, which is a dense subspace ofA consisting
of the functions inS3c(H/Z × g/q), the space of Schwartz functions in the
(x, y, r) variables having compact support in ther(∈ g/q) variable. OnA, we
define the (twisted) multiplication and the (twisted) involution as follows:

(f × g)(x, y, r) =

∫

f (x̃, ỹ, r)g(x − x̃, y − ỹ, r)

ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ, (2.2)

and

f

∗

(x, y, r) = f (−x,−y, r)ē[η
λ

(r)β(x, y)]. (2.3)

It is not difficult to see thatA = S3c(H/Z× g/q) is closed under the multipli-
cation (2.2) and the involution (2.3). Here, we observe the role being played
by the twisting cocycleσ defined in (2.1).

Elements ofA are viewed as operators on the Hilbert spaceH = L

2
(H/Z×

g/q), via the “regular representation”,L, defined by

(L

f

ξ)(x, y, r) =

∫

f (x̃, ỹ, r)ξ(x − x̃, y − ỹ, r)ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ.

(2.4)

For f ∈ A, define its norm by‖f ‖ = ‖L

f

‖. Then (A,×, ∗

, ‖ ‖) as
above is a pre-C∗-algebra, whose completion is theC∗-algebraA ∼

=

C

∗

(H/Z,C0(g/q), σ ).

Remark. To be more precise, the completion ofA with respect to the norm
given by the regular representation,L, should be isomorphic to the “reduced”
twisted groupC∗-algebraC∗

r

(H/Z,C0(g/q), σ ). But by using a result of
Packer and Raeburn [17], it is rather easy to see that the amenability condi-
tion holds in our case, thereby obtaining the isomorphism with the “full”C

∗-
algebra as above. Meanwhile, we should point out that our definition ofA is
slightly different from that of [8]: There,A is a subspace ofC0(G), while at
present we view it as functions contained inC0(H/Z × g/q), in the(x, y, r)
variables. Nevertheless, they can be regarded as the same since we consider the
functions inA as operators contained in ourC∗-algebraA. The identification
of the function spaces is given by the (partial) Fourier transform.
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TheC∗-algebraA becomes a HopfC∗-algebra, together with itscomultipli-
cation1. In the following proposition, we chose to describe the comultiplica-
tion in terms of a certain “multiplicative unitary operator”U

A

∈ B(H ⊗ H).
See [8] for a discussion on the construction ofU

A

.

Proposition 2.1. (1) LetU
A

be the operator onH ⊗ H defined by

U

A

ξ(x, y, r, x

′

, y

′

, r

′

) = (e

−λr

′

)

n

ē[η
λ

(r

′

)β(e

−λr

′

x, y

′

− e

−λr

′

y)]

ξ(e

−λr

′

x, e

−λr

′

y, r+r

′

, x

′

−e

−λr

′

x, y

′

−e

−λr

′

y, r

′

).

ThenU
A

is a unitary operator, and is multiplicative. That is,

U12U13U23 = U23U12.

(2) For f ∈ A, define1f by

1f = U

A

(f ⊗ 1)U
A

∗

,

wheref and1f are understood as operatorsL
f

and(L⊗ L)

1f

. Then
1 can be extended to a non-degenerateC∗-homomorphism1 : A →

M(A⊗ A) satisfying the coassociativity condition:

(1⊗ id)(1f ) = (id ⊗1)(1f ).

Proof. See Proposition 3.1 and Theorem 3.2 of [8], together with the
Remark 3.3 following them. 2

There is a useful characterization of theC∗-algebraA, via the multiplicative
unitary operatorU

A

. The following result is suggested by the general theory
on multiplicative unitaries by Baaj and Skandalis [2].

Proposition 2.2. LetU
A

be as above. Consider the subspaceA(U

A

) ofB(H)
defined below:

A(U

A

) = {(ω ⊗ id)(U
A

) : ω ∈ B(H)

∗

}.

By standard theory,A(U
A

) is a subalgebra of the operator algebraB(H), and
the subspaceA(U

A

)H forms a total set inH.
We can show that the norm-closure inB(H) of the algebraA(U

A

) is exactly
theC∗-algebraA we are studying. That is,

A = {(ω ⊗ id)(U
A

) : ω ∈ B(H)

∗

}

‖ ‖

.
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Proof. The definition and the properties ofA(U

A

) can be found in [2]. We
only need to verify the last statement. We will work with the standard notation
ω

ξ,η

, whereξ, η ∈ H. It is defined byω
ξ,η

(a) = 〈aξ, η〉, and it is well known
that linear combinations of theω

ξ,η

are (norm) dense inB(H)
∗

.
So consider(ω

ξ,η

⊗ id)(U
A

) ∈ B(H). We may further assume thatξ andη
are continuous functions having compact support. Letζ ∈ H. Then, by using
change of variables, we have:

(ω

ξ,η

⊗ id)(U
A

)ζ(x, y, r)

=

∫

(U

A

(ξ ⊗ ζ ))(x̃, ỹ, r̃; x, y, r)η(x̃, ỹ, r̃) dx̃dỹdr̃

=

∫

f (x̃, ỹ, r)ζ(x − x̃, y − ỹ, r)ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ,

where

f (x̃, ỹ, r) =

∫

ξ(x̃, ỹ, r̃ + r)(e

λr

)

n

η(e

λr

x̃, e

λr

ỹ, r̃) dr̃.

Sinceξ and η areL2-functions, the integral (and thusf ) is well defined.
Actually, sincef is essentially defined as a convolution product (inr) of two
continuous functions having compact support,f will be also continuous with
compact support. This means that

(ω

ξ,η

⊗ id)(U
A

) = L

f

∈ A.

Meanwhile, since the choice ofξ andη is arbitrary, we can see that the collec-
tion of thef will form a total set in the space of continuous functions in the
(x, y, r) variables having compact support. It follows from these two conclu-
sions that

{(ω ⊗ id)(U
A

) : ω ∈ B(H)

∗

}

‖ ‖

= A.

2

Meanwhile, from the proof of Theorem 3.2 of [8], we also have the following
result. These are not same as the density conditions of Definition 1.2, but are
actually stronger: This is rather well known and can be seen easily by applying
linear functionals (Use the fact that anyω ∈ A

∗ has the formω′

(· b), with
ω

′

∈ A

∗ andb ∈ A.).

Proposition 2.3. We have:

(1) 1(A)(1 ⊗ A) is dense inA⊗ A.
(2) 1(A)(A⊗ 1) is dense inA⊗ A.
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Proof. In the proof of the non-degeneracy of1 in Theorem 3.2 and Remark 3.3
of [8], we showed that the(1f )(1⊗ g)’s (for f, g ∈ A) form a total set in the
spaceS3c(H/Z × g/q × H/Z × g/q), which is in turn shown to be dense in
A⊗A: Under the natural injection fromS3c(H/Z × g/q ×H/Z × g/q) into
B(H⊗H), the algebraic tensor productA�A is sent into a dense subset of the
algebraic tensor productA�A. Since elements inS3c(H/Z×g/q×H/Z×g/q)

can be approximated (in theL1-norm) by elements ofA � A, we see that
S3c(H/Z×g/q×H/Z×g/q) is mapped into a dense subset (in theC

∗ norm)
of A ⊗ A. Thus it follows that1(A)(1 ⊗ A) is dense inA ⊗ A. The second
statement can be shown in exactly the same way. 2

Turning our attention to the other structures on(A,1), we point out that by
viewingA as a “quantumC0(G)”, we can construct itscounit, ε, andantipode,
S. These are described in the following proposition.

Proposition 2.4. (1) For f ∈ A, defineε : A → C by

ε(f ) =

∫

f (x, y,0) dxdy.

Thenε can be extended to aC∗-homomorphism fromA to C satisfying
the condition:(id ⊗ε)1 = (ε ⊗ id)1 = id.

(2) Consider a mapS : A → A defined by

(S(f ))(x, y, r) = (e

2λr
)

n

ē[η
λ

(r)β(x, y)]f (−eλrx,−eλry,−r).

ThenS can be extended to an anti-automorphismS : A → A, satisfying:
S(S(a)

∗

)

∗

= a and (S ⊗ S)(1a) = χ(1(S(a))), whereχ denotes the
flip. Actually, we have:S2

= Id.

Proof. See Theorem 4.1 and Proposition 4.3 of [8]. We had to use partial
Fourier transform to convert these results into the level of functions in the
(x, y, r) variables. We also mention here thatS is defined byS(a) =

ˆ

Ja

∗

ˆ

J ,
where ˆ

J is an involutive operator onH defined by

ˆ

Jξ(x, y, r) = (e

λr

)

n

ξ(e

λr

x, e

λr

y,−r).

Since ˆ

J is an anti-unitary involutive operator, it is easy to see thatS is an anti-
automorphism such thatS2

= Id. 2

Remark. The notation for the operatorˆJ is motivated by the modular theory
and by [15]. Meanwhile, since the square of the antipode is the identity, our
example is essentially theKacC∗-algebra(Compare with [7], although our
example is actually non-unimodular, unlike in that paper. See also [22], of
which our example is a kind of a special case.). We also note that in [8], we
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usedκ to denote the antipode, while we useS here. This is done so that we can
match our notation with the preferred notation of Kustermans and Vaes [14].

In general, the counit may as well be unbounded. So Proposition 2.4 implies
that what we have is a more restrictive “bounded counit”. HavingS bounded is
also a bonus. Even so, the result of the proposition is not enough to legitimately
call S an antipode. To give some support for our choice, we also showed the
following, albeit only at the level of the function spaceA. See section 4 of [8].

Proposition 2.5. For f ∈ A, we have:

m((id ⊗S)(1f )) = m((S ⊗ id)(1f )) = ε(f )1,

wherem : A ⊗ A → A is the multiplication.

This is the required condition for the antipode in the purely algebraic setting
of Hopf algebra theory [16]. In this sense, the proposition gives us a modest
justification for our choice ofS. However, in the operator algebra setting, this
is not the correct way of approach. One of the serious obstacles is that the
multiplicationm is in general not continuous for the operator norm, thereby
giving us trouble extendingm toA⊗ A orM(A⊗ A).

Because of this and other reasons (including the obstacles due to possible
unboundedness ofε andS), one has to develop a new approach. Motivated
by the theory of Kac algebras [6], operator algebraists have been treating
the antipode together with the notion of the Haar weight. This is also the
approach chosen by Masuda, Nakagami [15] and by Kustermans, Vaes [14].
As we mentioned earlier in this paper, any rigorous discussion about locally
compact quantum groups should be built around the notion of Haar weights. In
the next section, we will exclusively discuss the Haar weight for our(A,1),
and establish that(A,1) is indeed a “C∗-algebraic locally compact quantum
group”. We will come back to the discussion of the antipode in section 4.

Before wrapping up this section, let us mention the dual object for our
(A,1), which would be the “dual locally compact quantum group”(

ˆ

A,

ˆ

1).
Our discussion here is kept to a minimum. More careful discussion on(

ˆ

A,

ˆ

1)

is presented in a separate paper [11]. Meanwhile, see Appendix (Section 6) for
a somewhat different characterization of the dual object.

Proposition 2.6. (1) LetU
A

be as above. Consider the subspaceˆ

A(U

A

) of
B(H) defined by

ˆ

A(U

A

) = {(id ⊗ω)(U

A

) : ω ∈ B(H)

∗

}.

Then ˆ

A(U

A

) is a subalgebra of the operator algebraB(H), and the sub-
space ˆ

A(U

A

)H forms a total set inH.
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(2) The norm-closure inB(H) of the algebra ˆ

A(U

A

) is theC∗-algebra ˆ

A:

ˆ

A = {(id ⊗ω)(U

A

) : ω ∈ B(H)

∗

}

‖ ‖

.

(3) For b ∈

ˆ

A(U

A

), define ˆ

1b by ˆ

1b = U

A

∗

(1 ⊗ b)U

A

. Then ˆ

1 can be
extended to the comultiplicationˆ1 : ˆ

A → M(

ˆ

A⊗

ˆ

A).
(4) The duality exists at the level ofA(U

A

) and ˆ

A(U

A

), by the following
formula:

〈L(ω), ρ(ω

′

)〉 = (ω ⊗ ω

′

)(U

A

) = ω(ρ(ω

′

)) = ω

′

(L(ω)),

whereL(ω) = (ω ⊗ id)(U
A

) ∈ A(U

A

) and ρ(ω′

) = (id ⊗ω

′

)(U

A

) ∈

ˆ

A(U

A

).

Proof. Since our multiplicative unitary operatorU
A

is known to be regular,
we can just follow the standard theory of multiplicative unitary operators [2].

2

At this moment,( ˆ

A,

ˆ

1) is just a quantum semigroup, having only the comul-
tiplication. However, once we establish in section 3 the proof that our(A,1)

is indeed a (C∗-algebraic) locally compact quantum group, we can apply the
general theory [14], and show that( ˆ

A,

ˆ

1) is also a locally compact quantum
group. Meanwhile, we can give a more specific description of theC

∗-algebra
ˆ

A, as presented below.

Proposition 2.7. Let ˆ

A be the space of Schwartz functions in the(x, y, r)
variables having compact support in ther variable. Forf ∈

ˆ

A, define the
operatorρ

f

∈ B(H) by

(ρ

f

ζ )(x, y, r) =

∫

(e

λr̃

)

n

f (x, y, r̃)ζ(e

λr̃

x, e

λr̃

y, r − r̃) dr̃. (2.5)

Then theC∗-algebra ˆ

A is generated by the operatorsρ
f

.

Proof. As in the proof of Proposition 2.2, consider the operators(id ⊗ω

ξ,η

)(U

A

)

in ˆ

A(U

A

). Without loss of generality, we can assume thatξ andη are contin-
uous functions having compact support. Letζ ∈ H. Then we have:

(id ⊗ω

ξ,η

)(U

A

)ζ(x, y, r)

=

∫

(U

A

(ζ ⊗ ξ))(x, y, r; x̃, ỹ, r̃)η(x̃, ỹ, r̃) dx̃dỹdr̃

=

∫

(e

λr̃

)

n

f (x, y, r̃)ζ(e

λr̃

x, e

λr̃

y, r − r̃) dr̃,
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where

f (x, y, r̃) =

∫

ē[η
λ

(r̃)β(x, y − e

−λr̃

ỹ)]

ξ(x̃ − e

λr̃

x, ỹ − e

λr̃

y,−r̃)η(x̃, ỹ,−r̃) dx̃dỹ.

We see that(id ⊗ω

ξ,η

)(U

A

) = ρ

f

, andf is continuous with compact support.
By the same argument we used in the proof of Proposition 2.2, we conclude
that theC∗-algebra generated by the operatorsρ

f

, f ∈

ˆ

A, coincides with the
C

∗-algebra ˆ

A. 2

The above characterization ofˆA is useful when we wish to regardˆA as a
deformation quantization of a Poisson–Lie group. Actually, by using partial
Fourier transform, we can show without difficulty thatˆ

A

∼

=

ρ(C

∗

(G)), where
ρ is the right regular representation ofC∗

(G). In a future paper, we will have
an occasion to discuss the duality between(A,1) and( ˆ

A,

ˆ

1) in relation to
the Poisson–Lie group duality betweenG andH .

3. Haar weight

We have been arguing that(A,1) is a “quantizedC0(G)”. This viewpoint
has been helpful in our construction of its comultiplication1, counitε, and
antipodeS.

To discuss the (left invariant) Haar weight on(A,1), we pull this viewpoint
once more. Recall that the group structure onG has been specifically chosen
(Definition 1.6 of [8]) so that the Lebesgue measure onG becomes its left
invariant Haar measure. This suggests us to build the Haar weight on(A,1)

from the Lebesgue measure onG. At the level of functions inA, this suggestion
takes the following form:

Definition 3.1. OnA, define a linear functionalϕ by

ϕ(f ) =

∫

f (0, 0, r) dr.

In section 5 of [8], we obtained some results (including the “left invariance”
property) indicating that our choice ofϕ is a correct one. However, the discus-
sion was limited to the level of functions inA, and thus not very satisfactory.

Jumping up from the function level to the operator level can be quite techni-
cal, and it is not necessarily an easy task (For example, see [1], [23].). Whereas,
if one wants to rigorously formulate the construction of a locally compact quan-
tum group in the operator algebra setting, this step of “jumping up” (extending
ϕ to a weight) is very crucial.

Fortunately in our case, the discussion will be much simpler than some of
the difficult examples, since we can show thatϕ is tracial. Note the following:
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Proposition 3.2. Letϕ be defined onA as in Definition 3.1. Then forf ∈ A,
we have:

ϕ(f

∗

× f ) = ϕ(f × f

∗

) = ‖f ‖

2
2,

wheref ∗ is theC∗-involution off , as given in(2.3).

Proof. By equations (2.2) and (2.3), we have:

(f

∗

×f )(x, y, r) =

∫

f

∗

(x̃, ỹ, r)f (x − x̃, y − ỹ, r)

ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ

=

∫

f (−x̃,−ỹ, r)ē[η
λ

(r)β(x̃, ỹ)]f (x − x̃, y − ỹ, r)

ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ

=

∫

f (−x̃,−ỹ, r)f (x − x̃, y − ỹ, r)

ē[η
λ

(r)β(x̃, y)] dx̃dỹ.

It follows that:

ϕ(f

∗

× f ) =

∫

(f

∗

× f )(0, 0, r) dr

=

∫

f (−x̃,−ỹ, r)f (−x̃,−ỹ, r) dx̃dỹdr

=

∫

f (x̃, ỹ, r)f (x̃, ỹ, r) dx̃dỹdr = ‖f ‖

2
2.

The identityϕ(f × f

∗

) = ‖f ‖

2
2 can be proved similarly. 2

Corollary. By Proposition 3.2, we see thatϕ is a faithful, positive linear
functional which is a trace.

Now, let us begin the discussion of constructing a weight on(A,1) extend-
ing ϕ. As a first step, let us consider the associated GNS construction forϕ.
We can see below that the “regular representation”L onH we defined earlier
is the GNS representation forϕ.

Proposition 3.3. Consider the Hilbert spaceH = L

2
(H/Z × g/q), and let

3 : A ↪→ H be the inclusion map. Then forf, g ∈ A, we have:

〈3(f ),3(g)〉 = ϕ(g

∗

× f ).

Here〈 , 〉 is the inner product onH, conjugate in the second place. Meanwhile,
left multiplication gives a non-degenerate∗-representation,π

ϕ

: A → B(H),
which coincides with the “regular representation”L.

By essential uniqueness of the GNS construction, we conclude that
(H,3, π

ϕ

) is the GNS triple associated withϕ.
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Proof. SinceA = S3c(H/Z × g/q), clearlyA is a dense subspace ofH. The
inclusion map (i. e.3(f ) = f ) carriesA into H. Now for f, g ∈ A,

ϕ(g

∗

× f ) =

∫

g

∗

(x̃, ỹ, r)f (0 − x̃, 0 − ỹ, r)ē[η
λ

(r)β(x̃, 0 − ỹ)] dx̃dỹdr

=

∫

g(−x̃,−ỹ, r)ē[η
λ

(r)β(x̃, ỹ)]f (−x̃,−ỹ, r)ē[η
λ

(r)β(x̃,−ỹ)] dx̃dỹdr

=

∫

g(x̃, ỹ, r)f (x̃, ỹ, r) dx̃dỹdr = 〈f, g〉 = 〈3(f ),3(g)〉.

Consider now the left-multiplication representationπ
ϕ

. Then forf, ξ ∈ A,

(π

ϕ

(f ))(3(ξ))(x, y, r) := (3(f × ξ))(x, y, r) = (f × ξ)(x, y, r)

=

∫

f (x̃, ỹ, r)ξ(x − x̃, y − ỹ, r)

ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ

= L

f

ξ(x, y, r).

This shows thatπ
ϕ

is just the∗-representationL of equation (2.4). Since

A = 3(A) is dense inH, it is also clear thatπ
ϕ

(A)H

‖ ‖2
= H, which means

thatπ
ϕ

(= L) is non-degenerate. 2

We are ready to show thatA(⊆ H) is a “left Hilbert algebra” (See definition
below.).

Definition 3.4.([4], [21]) By a left Hilbert algebra, we mean an involutive
algebraU equipped with a scalar product such that the involution is an anti-
linear preclosed mapping in the associated Hilbert spaceH and such that
the left-multiplication representationπ of U is non-degenerate, bounded, and
involutive.

Proposition 3.5. The algebraA, together with its inner product inherited
from that ofH, is a left Hilbert algebra.

Proof. We viewA = 3(A) ⊆ H. It is an involutive algebra equipped with
the inner product inherited from that ofH. Sinceϕ is a trace, the mapf 7→ f

∗

is not just closable, but it is actually isometry and hence bounded. Note that
for everyf, g ∈ A, we have:

〈f

∗

, g〉 = ϕ(g

∗

× f

∗

) = ϕ(f

∗

× g

∗

) = 〈g

∗

, f 〉,

where we used the property thatϕ is a trace. The remaining conditions for
A being a left Hilbert algebra are immediate consequences of the previous
proposition. 2
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Remark. The closure of the involution onA is often denoted byT . The map
T is a closed, anti-linear map onH, andA is a core forT (Actually, T is
bounded.). Define∇ = T

∗

T . Clearly,A ⊆ D(∇) and∇(f ) = f for f ∈ A.
In other words,∇ = Id. The polar decomposition ofT is given byT = J∇

1
2 ,

where∇ is as above andJ is an anti-unitary operator. Obviously in our case,
T = J . The “modular operator”∇ plays an important role in the formulation
of the KMS property. But as we see here, we can ignore∇ from now on, all
due to the property thatϕ is a trace.

Since we have a left Hilbert algebra structure onA, we can apply the result
of Combes ([4], [21]) to obtain a weight extendingϕ. Although it is true that
we do not necessarily have to rely a lot on the theory of weights onC

∗-algebras
(Sinceϕ is a trace in our case, we could use even earlier results of Dixmier),
we nevertheless choose here the more general approach. The advantage is that
the process will remain essentially the same even in more difficult examples
where we may encounter non-tracial weights.

Theorem 3.6. There is a faithful, lower semi-continuous weight on theC

∗-
algebraA extending the linear functionalϕ. We will use the notationϕ

A

to
denote this weight.

Proof. The representationπ
ϕ

(= L) generates the von Neumann algebra
L(A)

′′ on the Hilbert spaceH. It would be actually the von Neumann algebra
M

A

generated byA. On this von Neumann algebra, we can define as in the
below a faithful, semi-finite, normal weight̃ϕ (See Theorem 2.11 of [4].):

Forp ∈ L(A)

′′ andp ≥ 0, defineϕ̃(p) by

ϕ̃(p) =

{

‖ξ‖

2
= 〈ξ, ξ〉 if ∃ξ ∈ A

′′ such thatp1/2
= π

ϕ

(ξ)

+∞ otherwise

HereA

′′ denotes the set of “left bounded elements” [4, §2].

We restrict this normal weight to theC∗-algebraL(A)
‖ ‖

(norm-closure).
Then the restriction is a faithful, lower semi-continuous weight. Sinceπ

ϕ

(= L)

extends fromA to an isomorphismA ∼

=

L(A)

‖ ‖

, we can use this isomorphism
to obtain the faithful, lower semi-continuous weight (to be denoted byϕ

A

) on
A.

It is clear from the construction thatϕ
A

extends the linear functionalϕ
on A. To see this explicitly, supposef ∈ A. Thenπ

ϕ

(f )

∗

π

ϕ

(f ) ∈ L(A)

′′.
According to the theory of left Hilbert algebras, we then haveπ

ϕ

(f )

∗

π

ϕ

(f ) ∈

M

ϕ̃

+ and

ϕ̃(π

ϕ

(f )

∗

π

ϕ

(f )) = 〈3(f ),3(f )〉 = 〈f, f 〉 = ϕ(f

∗

f ).

But π
ϕ

(f )

∗

π

ϕ

(f ) = π

ϕ

(f

∗

f ) ∈ L(A)

‖ ‖

∼

=

A, and sinceϕ
A

is the restriction
of ϕ̃ toA, it follows thatπ

ϕ

(f

∗

f ) ∈ M

ϕ

A

, andϕ
A

(π

ϕ

(f

∗

f )) = ϕ(f

∗

f ). By



Haar measure on a locally compact quantum group 17

using polarization, we conclude that in general,L(A) ⊆ M

ϕ

A

and

ϕ

A

(π

ϕ

(f )) = ϕ(f ), ∀f ∈ A.

2

Remark. From the proof of the proposition, we can see thatϕ

A

is densely
defined (note that we haveL(A) ⊆ M

ϕ

A

). It is a faithful weight since the linear
functionalϕ is faithful onA. Sinceϕ

A

is obtained by restricting the normal
weightϕ̃ on the von Neumann algebra level, it follows that it is also KMS (We
will not give proof of this here, sinceϕ being a trace makes this last statement
redundant: See comment after Definition 1.1.). In the terminology of the first
section,ϕ

A

is a “proper” weight, which is “faithful” and “KMS” (actually a
trace).

From now on, let us turn our attention to the weightϕ

A

. Consider the GNS
triple associated withϕ

A

, given by the following ingredients:

• H

ϕ

A

= H

• 3

ϕ

A

: N

ϕ

A

→ H. The proof of the previous theorem suggests that for
a ∈ N

ϕ

A

, there exists a unique “left bounded” elementv ∈ H. We define
3

ϕ

A

(a) = v.
• π

ϕ

A

: A → B(H) is the inclusion map.

Note that forf ∈ A, we have:3
ϕ

A

(π

ϕ

(f )) = 3(f ). So we know that3
ϕ

A

has a dense range inH.
Define30 as the closure of the mappingL(A) → H : π

ϕ

(f ) 7→ 3(f ).
Let us denote byA0 the domain of30. Clearly,30 is a restriction of3

ϕ

A

. By
using the properties ofϕ

A

, including its lower semi-continuity and the “left
invariance” at the level of the∗-algebraA, one can improve the left invariance
up to the level ofA0. One can also show thatA0 = N

ϕ

A

and thatL(A) is a
core for3

ϕ

A

(We can more or less follow the discussion in section 6 of [13].).
From these results, the left invariance ofϕ

A

can be proved at theC∗-algebra
level (A similar result can be found in Corollary 6.14 of [13].).

However, we plan to present a somewhat different proof of the left invari-
ance, which is in the spirit of Van Daele’s recently developed method [23],
[24]. The main strategy is to show that there exists a faithful, semi-finite, nor-
mal weightµ on B(H) such that at least formally,µ(ba) = ϕ

B

(b)ϕ

A

(a) for
b ∈ B, a ∈ A. [See Appendix (Section 6) for the definition of the “dual”B
and of the weightϕ

B

.]

Proposition 3.7. Letγ be the unbounded operator onH having3(A) as a
core and is defined by

γ3(f ) = 3(γf ), f ∈ A,

whereγf ∈ A is such thatγf (x, y, r) = (e

2λr
)

n

f (x, y, r).
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Now onB(H), we define a linear functionalµ by

µ := Tr(γ ·).

Thenµ is a faithful, semi-finite, normal weight onB(H) such that forb ∈ N

ϕ

B

anda ∈ N

ϕ

A

,

µ(b

∗

a

∗

ab) = ϕ

B

(b

∗

b)ϕ

A

(a

∗

a).

Proof. The operatorγ is very much related with the “modular function” oper-
ator, ˜δ, discussed in section 5 (In our case,γ =

˜

δ

−1.). For more precise defi-
nition of γ , see Definition 2.6 of [24].

Let us verify the last statement, at the dense function algebra level ofb ∈

ˆ

A(⊆ M

B

) anda ∈ A(⊆ M

A

). For this, note that by Lemma 6.5 of Appendix
and Proposition 3.2, we have:

ϕ

B

(b

∗

b) = ‖b‖

2
2, and ϕ

A

(a

∗

a) = ‖a‖

2
2.

Meanwhile, by equations (6.1) and (2.4), we have:

(b

∗

a

∗

ab)ξ(x, y, r) =

∫

b(e

λr

x, e

λr

y, r̃ − r) a(x̃, ỹ, r̃)e[η
λ

(r̃)β(x̃, y)]

a(x̂, ŷ, r̃)ē[η
λ

(r̃)β(x̂, y + ỹ − ŷ)]

b(e

λr̂

(x + x̃ − x̂), e

λr̂

(y + ỹ − ŷ), r̃ − r̂)

ξ(x + x̃ − x̂, y + ỹ − ŷ, r̂) dr̃dx̃dỹdx̂dŷdr̂.

If we let (ξ
l

) be an orthonormal basis inH, we then have:

µ(b

∗

a

∗

ab) = Tr(γ b∗

a

∗

ab) =

∑

l

〈(γ b

∗

a

∗

ab)ξ

l

, ξ

l

〉

=

∑

l

(

∫

(e

2λr
)

n

(b

∗

a

∗

ab)ξ

l

(x, y, r)ξ

l

(x, y, r) dxdydr

)

=

∫

(e

2λr
)

n

b(e

λr

x, e

λr

y, r̃ − r) a(x̃, ỹ, r̃)e[η
λ

(r̃)β(x̃, y)]

a(x̃, ỹ, r̃)ē[η
λ

(r̃)β(x̃, y)]b(eλrx, eλry, r̃ − r) dxdydrdx̃dỹdr̃

=

∫

b(x, y, r) a(x̃, ỹ, r̃)a(x̃, ỹ, r̃)b(x, y, r) dxdydrdx̃dỹdr̃

= ‖b‖

2
2‖a‖

2
2 = ϕ

B

(b

∗

b)ϕ

A

(a

∗

a).

We used the change of variables.
Since ˆ

A andA generate the von Neumann algebrasM
B

andM
A

, while
M

B

M

A

is σ -strongly dense inB(H) (see Lemma 6.4 of Appendix), this will
characterizeµ. The properties ofµ being faithful, semi-finite, and normal
follow from those ofϕ

A

andϕ
B

, as well as the fact thatµ is a trace. 2
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The significance of the above proposition is that for a certain well-chosen
elementb ∈ B, we know thatA 3 a 7→ µ(b

∗

ab) is a scalar multiple ofϕ
A

.
This observation is useful in our proof of the left invariance ofϕ

A

. Before we
present our main theorem, let us first introduce a lemma on the linear forms
ω

ξ,η

.

Lemma 3.8. Letξ, η ∈ H and considerω
ξ,η

, as defined earlier. If(ξ
k

) forms
an orthonormal basis ofH, we have:

ω

ξ,η

(ab) =

∑

k

ω

ξ

k

,η

(a)ω

ξ,ξ

k

(b), a, b ∈ B(H).

Proof. We have:

ω

ξ,η

(ab) = 〈abξ, η〉 = 〈bξ, a

∗

η〉

=

∑

k

〈bξ, ξ

k

〉〈ξ

k

, a

∗

η〉 =

∑

k

〈bξ, ξ

k

〉〈aξ

k

, η〉

=

∑

k

ω

ξ,ξ

k

(b)ω

ξ

k

,η

(a).

2

The following theorem shows the left invariance ofϕ
A

, as defined by equa-
tion (1.1).

Theorem 3.9. For any positive elementa ∈ A such thatϕ
A

(a) < ∞, and
for ω ∈ A

∗

+

, we have:

ϕ

A

((ω ⊗ id)(1a)) = ω(1)ϕ
A

(a).

Proof. As stated above, leta ∈ M

ϕ

A

+ and letω ∈ A

∗

+

. Without loss of
generality, we can assume thatω is a (positive) vector state. That is, we can
assume that there is a vectorζ ∈ H such thatω = ω

ζ,ζ

.
Now consider(ω ⊗ id)(1a) = (ω

ζ,ζ

⊗ id)(1a). For our purposes, it is
more convenient to express1a in terms of the “dual” multiplicative unitary
operator defined in Lemma 6.1 in Appendix: From Proposition 6.3, we know
that1a =

̂

U

A

∗

(1 ⊗ a)

̂

U

A

. If we let (ξ
k

) be an orthonormal basis inH, we
would then have:

(ω ⊗ id)(1a) = (ω

ζ,ζ

⊗ id)(̂U
A

∗

(1 ⊗ a)

̂

U

A

)

=

∑

k

[(ω
ξ

k

,ζ

⊗ id)(̂U
A

∗

)]a[(ω
ζ,ξ

k

⊗ id)(̂U
A

)]

=

∑

k

v

k

∗

a

1
2
a

1
2
v

k

.
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The sum is convergent in theσ -weak topology on the von Neumann algebraM

A

(Use Lemma 3.8.). For convenience, we letv

k

= (ω

ζ,ξ

k

⊗ id)(̂U
A

)(∈ B(H)).
Note that sincêU

A

is unitary, the operatorsv
k

have the property that for the
orthonormal basis(ξ

l

) of H, we have:
∑

k

〈v

k

ξ

l

, v

k

ξ

j

〉 = 〈

̂

U

A

(ζ ⊗ ξ

l

),

̂

U

A

(ζ ⊗ ξ

j

)〉

= 〈ζ ⊗ ξ

l

, ζ ⊗ ξ

j

〉 = 〈ζ, ζ 〉〈ξ

l

, ξ

j

〉. (3.1)

Next, suggested by Proposition 3.7 and the comments following it, let us
choose a fixed elementb ∈

ˆ

A(⊆ N

ϕ

B

), so that we have:

ϕ

A

(a) =

(

1

‖b‖

2
2

)

µ(b

∗

ab), for a ∈ M

ϕ

A

.

Then combining these observations, we have the following:

ϕ

A

((ω

ζ,ζ

⊗ id)(1a)) = ϕ

A

(

∑

k

v

k

∗

a

1
2
a

1
2
v

k

)

=

∑

k

ϕ

A

(v

k

∗

a

1
2
a

1
2
v

k

)

=

1

‖b‖

2
2

∑

k

µ(b

∗

v

k

∗

a

1
2
a

1
2
v

k

b) =

1

‖b‖

2
2

∑

k,l

Tr(γ b∗

v

k

∗

a

1
2
a

1
2
v

k

bξ

l

, ξ

l

)

=

1

‖b‖

2
2

∑

k,l

〈v

k

γ

1
2
a

1
2
bξ

l

, v

k

γ

1
2
a

1
2
bξ

l

〉

=

1

‖b‖

2
2

∑

l

〈ζ, ζ 〉〈γ

1
2
a

1
2
bξ

l

, γ

1
2
a

1
2
bξ

l

〉 by equation (3.1)

=

1

‖b‖

2
2

〈ζ, ζ 〉µ(b

∗

ab) = 〈ζ, ζ 〉ϕ

A

(a) = ‖ω‖ϕ

A

(a) = ω(1)ϕ
A

(a).

2

As we remarked in section 1, proving this “weak” version of the left invari-
ance is enough. In this way, we have shown thatϕ

A

is a proper, faithful, KMS
(tracial) weight on(A,1), which is left invariant. This satisfies the require-
ment of Definition 1.2.

We now need to talk about the right invariant weight on(A,1). Again by
viewing (A,1) as a “quantizedC0(G)”, we try to build the weight from the
right Haar measure ofG (The group structure ofG as defined in Definition 1.6
of [8] immediately gives us the natural choice for its right Haar measure.). Just
as we did at the beginning of this section, this suggestion lets us to consider
the linear functionalψ onA, as described below.

Definition 3.10. OnA, define a linear functionalψ by

ψ(f ) =

∫

f (0, 0, r)(e−2λr
)

n

dr.
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It is helpful to realize that at the level of the∗-algebraA, we have:ψ = ϕ◦S,
whereS is the antipodal map we defined in Proposition 2.4. Indeed, forf ∈ A,
we have:

ϕ(S(f )) =

∫

(S(f ))(0, 0, r) dr =

∫

(e

2λr
)

n

ē[η
λ

(r)β(0, 0)]f (0, 0,−r) dr

=

∫

f (0, 0, r)(e−2λr
)

n

dr = ψ(f ).

Therefore, to extendψ to theC∗-algebra level, we may considerψ
A

= ϕ

A

◦S,
whereS is now regarded as an antiautomorphism onA.

Remark. Defining ψ
A

= ϕ

A

◦ S is not entirely correct: In general, the
“antipode” S may not be defined everywhere and can be unbounded. How-
ever, even in the general case, the antipode can be always written in the form
S = Rτ

−

i

2
(“polar decomposition” ofS), whereτ is the so-called “scaling

group” andR is the “unitary antipode”. In our case,τ ≡ Id andR = S (See
section 4.). The correct way of definingψ

A

would be:ψ
A

= ϕ

A

◦R, which is
true in general.

SinceR is an (anti-)automorphism onA, it follows thatψ
A

= ϕ

A

◦ R is
clearly a faithful, lower semi-continuous, densely defined KMS weight onA,
extendingψ . Checking the “right invariance” is straightforward, if we use the
property ofR.

Theorem 3.11. Letψ
A

= ϕ

A

◦ R. It is a proper, faithful, KMS (and tracial)
weight onA. It is also “right invariant”. That is, for a ∈ M

ψ

A

+ and for
ω ∈ A

∗

+

, we have:

ψ

A

((id ⊗ω)(1a)) = ω(1)ψ
A

(a).

Proof. Recall from Proposition 2.4 thatR(= S) satisfies(R ⊗ R)(1a) =

χ(1(R(a))), whereχ denotes the flip. We thus have:

ψ

A

((id ⊗ω)(1a)) = ϕ

A

(R((id ⊗ω)(1a)))

= ϕ

A

((id ⊗ω)((R ⊗ R)(1a)))

= ϕ

A

((id ⊗ω)(χ(1(R(a))))) = ϕ

A

((ω ⊗ id)(1(R(a))))

= ω(1)ϕ
A

(R(a)) ϕ

A

: left invariant

= ω(1)ψ
A

(a).

2

We thus have the weightψ
A

on (A,1), satisfying the requirement of Defi-
nition 1.2. For another characterization of the right invariant weight, see sec-
tion 5.

Finally, we are now able to say that(A,1) is indeed a(C∗-algebraic) locally
compact quantum group, in the sense of [14].



22 Byung-Jay Kahng

Theorem 3.12. The pair(A,1), together with the weightsϕ
A

andψ
A

on it,
is aC∗-algebraic locally compact quantum group.

Proof. Combine the results of Proposition 2.1 and Proposition 2.3 on the
comultiplication1. Theorem 3.6 and Theorem 3.9 gives the left invariant
weightφ

A

, while Theorem 3.11 gives the right invariant weightψ

A

. By Defini-
tion 1.2, we conclude that(A,1) is a(reduced)C∗-algebraic quantum group.

2

4. Antipode

According to the general theory (by Kustermans and Vaes [14]), the result of
Theorem 3.12 is enough to establish our main goal of showing that(A,1) is
indeed aC∗-algebraic locally compact quantum group (satisfying Definition
1.2).

Assuming both the left invariant and the right invariant weights in the defi-
nition may look somewhat peculiar, while there is no mention on the antipode.
However, using these rather simple set of axioms, Kustermans and Vaes could
prove additional properties for(A,1), so that it can be legitimately called a
locally compact quantum group. They first construct a manageable multiplica-
tive unitary operator (in the sense of [2] and [27]) associated with(A,1). [In
our case, this unitary operatorW coincides with our̂U

A

defined in Appendix.]
More significantly, they then construct the antipode and its polar decomposi-
tion. The uniqueness (up to scalar multiplication) of the Haar weight is also
obtained.

An aspect of note through all this is that in this new definition, the “left
(or right) invariance” of a weight has been formulated without invoking the
antipode, while a characterization of the antipode is given without explicitly
referring to any invariant weights. This is much simpler and is a fundamen-
tal improvement over earlier frameworks, where one usually requires certain
conditions of the type:

(id ⊗ϕ)((1 ⊗ a)(1b)) = S((id ⊗ϕ)((1a)(1 ⊗ b))).

It is also more natural. Note that in the cases of ordinary locally compact groups
or Hopf algebras in the purely algebraic setting, the axioms of the antipode do
not have to require any relationships to invariant measures.

For details on the general theory, we will refer the reader to [14]. What
we plan to do in this section is to match the general theory with our specific
example. Let us see if we can re-constructS from (A,1).

By general theory ([27], [14]), the antipode,S, can be characterized such
that{(ω ⊗ id)(U

A

) : ω ∈ B(H)

∗

} is a core forS and

S((ω ⊗ id)(U
A

)) = (ω ⊗ id)(U
A

∗

), ω ∈ B(H)

∗

. (4.1)
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It is a closed linear operator onA. The domainD(S) is a subalgebra ofA
andS is antimultiplicative: i. e.S(ab) = S(b)S(a), for anya, b ∈ D(S). The
imageS(D(S)) coincides withD(S)∗ andS(S(a)∗)∗ = a for anya ∈ D(S).
The operatorS admits the (unique) “polar decomposition”:S = Rτ

−

i

2
, where

R is the “unitary antipode” andτ
−

i

2
is the analytic generator of a certain one

parameter group(τ
t

)

t∈R

of ∗-automorphisms ofA (called the “scaling group”).

Remark. In [14], the scaling group and the unitary antipode are constructed
first (using only the multiplicative unitary operator and the invariant weights),
from which they define the antipode viaS = Rτ

−

i

2
. The characterization given

above is due to Woronowicz [27].
To compareS given by equation (4.1) with our ownS defined in Proposi-

tion 2.4, let us again considerω
ξ,η

. From the proof of Proposition 2.2, we know
that

(ω

ξ,η

⊗ id)(U
A

) = L

f

,

where

f (x̃, ỹ, r) =

∫

ξ(x̃, ỹ, r̃ + r)(e

λr

)

n

η(e

λr

x̃, e

λr

ỹ, r̃) dr̃.

We can carry out a similar computation for(ω
ξ,η

⊗ id)(U
A

∗

). For ζ ∈ H,
we would have (again using change of variables):

(S(L

f

))ζ(x, y, r) = S((ω

ξ,η

⊗ id)(U
A

))ζ(x, y, r)

= (ω

ξ,η

⊗ id)(U
A

∗

)ζ(x, y, r)

=

∫

(U

A

∗

(ξ ⊗ ζ ))(x̃, ỹ, r̃; x, y, r)η(x̃, ỹ, r̃) dx̃dỹdr̃

=

∫

g(x̃, ỹ, r)ζ(x−x̃, y−ỹ, r)ē[η
λ

(r)β(x̃, y−ỹ)] dx̃dỹ

= L

g

ζ(x, y, r),

where

g(x̃, ỹ, r) =

∫

(e

λr

)

n

ξ(−e

λr

x̃,−e

λr

ỹ, r̃ − r)η(−x̃,−ỹ, r̃)

ē[η
λ

(r)β(x̃, ỹ)] dr̃.

This means thatS(f ) = g. Comparing withf , we see that

(S(f ))(x, y, r) = g(x, y, r) = (e

2λr
)

n

f (−e

λr

x̃,−e

λr

ỹ,−r)ē[η
λ

(r)β(x, y)].

This is exactly the expression we gave in Proposition 2.4, verifying that our
situation agrees perfectly with the general theory.
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Since we have already seen thatS : A → A is an antiautomorphism (defined
everywhere onA), the uniqueness of the polar decomposition implies that
R = S andτ ≡ Id.

As a final comment on the general theory, we point out that after one defines
the antipode asS = Rτ

−

1
2
, one proves that fora, b ∈ N

ψ

A

,

S((ψ

A

⊗ id)((a∗

⊗ 1)(1b))) = (ψ

A

⊗ id)(1(a∗

)(b ⊗ 1)).

In this way, one can “define”S, as well as give a stronger version of the
invariance ofψ

A

. The fact that this result could be obtained from the defining
axioms (as opposed to being one of the axioms itself) was the significant
achievement of [14].

5. Modular function

To motivate the modular function of(A,1), let us re-visit our right invariant
weightψ

A

. We will keep the notation of Section 3. Recall that at the level of the
dense∗-algebraA, the right invariant weight is given by the linear functional
ψ :

ψ(f ) =

∫

f (0, 0, r)(e−2λr
)

n

dr.

Let us consider the Hilbert spaceH
R

, which will be the GNS Hilbert space
for ψ . It is defined such thatH

R

= H as a space and the inner product on it is
defined by

〈f, g〉

R

=

∫

f (x, y, r)g(x, y, r)(e

−2λr
)

n

dr.

Let 3
R

be the inclusion map3
R

: A ↪→ H

R

. We can see easily that for
f, g ∈ A,

〈3

R

(f ),3

R

(g)〉

R

= 〈3(f ),3(δg)〉.

Hereδg ∈ A defined byδg(x, y, r) = (e

−2λr
)

n

g(x, y, r).
For motivational purposes, let us be less rigorous for the time being. Observe

that working purely formally, we can regardδg as follows:

δg(x, y, r) = (e

−2λr
)

n

g(x, y, r)

=

∫

δ(x̃, ỹ, r)g(x − x̃, y − ỹ, r)ē[η
λ

(r)β(x̃, y − ỹ)] dx̃dỹ

= (δ × g)(x, y, r),
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whereδ is considered as a (Dirac delta type) “function” in the(x, y, r) variables
such that

δ(x, y, r) = 0, (if x 6= 0 ory 6= 0)
∫

δ(x, y, r) dxdy = (e

−2λr
)

n

.

At the level of the functions in the(x, y, z) variables,δ corresponds to the
following “function” (we may use partial Fourier transform, again purely for-
mally):

δ(x, y, z) =

∫

e[(−e−λrp) · x + (−e

−λr

q) · y + (−r)z] dpdqdr.

In this formulation, we see an indication of the inverse operation onG (Note
that inG, we have(p, q, r)−1

= (−e

−λr

p,−e

−λr

q,−r).).
These remarks modestly justifies our intention to callδ a “modular function”.

Certainly, we see thatδ plays an important role relating〈 , 〉

R

and〈 , 〉, or in
other words, relatingψ andϕ. A word of caution is thatδ is not bounded and
not exactly a function. What we plan to do here is to make this notion precise
in theC∗-algebra setting.

Note that sinceA is a dense subspace ofH, we may already regard the
map ˜

δ : A 3 g 7→ δg ∈ A as an operator onH. It would be an (unbounded)
operator affiliated with the von Neumann algebraL(A)′′ = M

A

, since for an
arbitrary elementb ∈ L(A)

′ andg ∈ A(⊆ A), we would have:

b

˜

δg =

˜

δgb =

˜

δbg.

By viewing A as a dense subspace ofH, we conclude that˜δ commutes with
b ∈ L(A)

′, proving our claim that˜δ is affiliated withM
A

.
We may pull down the operator˜δ to theC∗-algebra level, and obtain an oper-

ator affiliated withA, in theC∗-algebra setting (c. f. in the sense of Woronow-
icz [26]). So define first a closed linear (unbounded) operator,N , fromH into
H

R

such that3(A) is a core forN and

N3(f ) := 3

R

(f ), f ∈ A.

ThenN is a densely defined, injective operator with dense range. Note also
that〈N3(f ),3

R

(g)〉

R

= 〈3(f ),3(δg)〉. So we have3
R

(A) ⊆ D(N

∗

), and

N

∗

3

R

(g) = 3(δg), g ∈ A.

Consider the following operator (which will be the “modular function”).
Clearly,3(A) ⊆ D(δ

A

) andδ
A

3(f ) = 3(δf ).

Definition 5.1. Defineδ
A

= N

∗

N . It is an injective, positive (unbounded)
operator onH.
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By general theory, we can say thatδ
A

is the appropriate definition of the
“modular function” in theC∗-algebra setting.

Theorem 5.2. Letδ
A

be defined as above. Then the following properties hold.

(1) δ
A

is an operator affiliated with theC∗-algebraA.
(2) 1(δ

A

) = δ

A

⊗ δ

A

.
(3) τ

t

(δ

A

) = δ

A

andR(δ
A

) = δ

−1
A

.

(4) ψ(a) = ϕ(δ

1
2
A

aδ

1
2
A

), for a ∈ A.

Proof. It is not difficult to see thatδ
A

is cut down from the operator˜δ. For
proof of the statements, see [14, §7] or see [13, §8]. There are also important
relations relating the modular automorphism groups corresponding toϕ

A

and
ψ

A

, but in our case they become trivial. 2

6. Appendix: An alternative formulation of the dual

The aim of this Appendix is to present a dual counterpart to our locally compact
quantum group(A,1), which is slightly different (though isomorphic) from
(

ˆ

A,

ˆ

1) defined in Section 2. It would be actually the HopfC∗-algebra having
the opposite multiplication and the opposite comultiplication to( ˆ

A,

ˆ

1). To
avoid a lengthy discussion, we plan to give only a brief treatment. But we will
include results that are relevant to our main theorem in Section 3.

Let us define(B,1
B

), by again using the language of multiplicative unitary
operators. We begin with a lemma, which is motivated by the general theory
of multiplicative unitary operators [2].

Lemma 6.1. Let j ∈ B(H) be defined by

jξ(x, y, r) = (e

λr

)

n

ē[η
λ

(r)β(x, y)]ξ(−eλrx,−eλry,−r).

Thenj is a unitary operator such thatj2
= 1. Moreover, the operator̂U

A

defined by

̂

U

A

= 6(j ⊗ 1)U
A

(j ⊗ 1)6, 6 denotes the flip

is multiplicative unitary and is regular. Forξ ∈ H, we specifically have:

̂

U

A

ξ(x, y, r, x

′

, y

′

, r

′

) = e[η
λ

(r)β(e

λ(r

′

−r)

x

′

, y)]

ξ(x + e

λ(r

′

−r)

x

′

, y + e

λ(r

′

−r)

y

′

, r; x

′

, y

′

, r

′

− r).

Remark. The proof is straightforward. What is really going on is that the triple
(H, U

A

, j) forms aKac system, in the terminology of Baaj and Skandalis (See
section 6 of [2].). The operatorj may be written asj =

ˆ

JJ = J

ˆ

J , where ˆ

J
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is the anti-unitary operator defined in the proof of Proposition 2.4, whileJ is
the anti-unitary operator determining the∗-operation ofA as mentioned in the
remark following Proposition 3.5. We will have an occasion to say more about
these operators in our future paper.

Definition 6.2. Let̂U
A

be the multiplicative unitary operator obtained above.
Define(B,1

B

) as follows:

(1) LetA(̂U
A

) be the subspace ofB(H) defined by

A(

̂

U

A

) = {(ω ⊗ id)( ˆ

U

A

) : ω ∈ B(H)

∗

}.

ThenA(

̂

U

A

) is a subalgebra ofB(H), and the subspaceA(̂U
A

)H forms
a total set inH.

(2) The norm-closure inB(H) of the algebraA(̂U
A

) is theC∗-algebraB. The
σ -strong closure ofA(̂U

A

) in B(H)will be the von Neumann algebraM
B

.
(3) For b ∈ A(

̂

U

A

), define1
B

(b) by1
B

(b) =

̂

U

A

(b⊗ 1)̂U
A

∗

. Then1
B

can
be extended to the comultiplication onB, and also to the level of the von
Neumann algebraM

B

.

We do not give the proof here, since it is essentially the same as in Propo-
sitions 2.2 and 2.6. Let us just add a brief clarification: By a comultiplication
onB, we mean a non-degenerateC∗-homomorphism1

B

: B → M(B ⊗ B)

satisfying the coassociativity; whereas by a comultiplication onM

B

, we mean
a unital normal∗-homomorphism1

B

: M
B

→ M

B

⊗M

B

satisfying the coas-
sociativity. In the following proposition, we give a more specific description
of theC∗-algebraB.

Proposition 6.3. (1) Forω ∈ B(H)

∗

, we letλ(ω) = (ω⊗ id)(̂U
A

). Then we
have:λ(ω) = jρ(ω)j , whereρ(ω) = (id ⊗ω)(U

A

) ∈

ˆ

A(U

A

) as defined
in equation(2.5).

(2) Let ˆ

A be the space of Schwartz functions in the(x, y, r) variables having
compact support in ther variable. Forf ∈

ˆ

A, define the operatorλ
f

∈

B(H) by

(λ

f

ζ )(x, y, r) =

∫

f (e

λr̃

x, e

λr̃

y, r − r̃)ζ(x, y, r̃) dr̃. (6.1)

Then theC∗-algebraB is generated by the operatorsλ
f

. By partial
Fourier transform, we can also show thatB ∼

=

λ(C

∗

(G)), whereλ is the
left regular representation ofC∗

(G).
(3) For anyf, g ∈

ˆ

A, we have:[ρ
f

, λ

g

] = 0. Actually,M
B

= M

ˆ

A

′, where
M

ˆ

A

is the von Neumann algebra generated byˆ

A.
(4) For b ∈ (

ˆ

A,

ˆ

1), we have:(λ⊗ λ)(

ˆ

1b) =

̂

U

A

(λ(b)⊗ 1)̂U
A

∗

.
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(5) Dually, there exists an alternative characterization of theC∗-algebraA:

A = {(id ⊗ω)(

̂

U

A

) : ω ∈ B(H)

∗

}

‖ ‖

.

And fora ∈ A, we have:(L⊗ L)(1a) =

̂

U

A

∗

(1 ⊗ L(a))

̂

U

A

, whereL is
the regular representation ofA defined in Section 2.

Proof. See Proposition 6.8 of [2]. For instance, for the first statement, note
that:

λ(ω) = (id ⊗ω)((j ⊗ 1)U
A

(j ⊗ 1)) = jρ(ω)j.

The second statement is a consequence of this result. We can also give a direct
proof, just as in Propositions 2.2 and 2.6. Actually, we have:

jρ

f

j = λ

˜

f

, f ∈

ˆ

A,

where ˜

f (x, y, r) = ē[η
λ

(r)β(x, y)]f (−eλrx,−eλry,−r).
For the third and fourth statements, we can again refer to general theory

(Proposition 6.8 of [2]), or we can just give a direct proof. Since we see (up to
partial Fourier transform in thex andy variables) thatρ

f

andλ
f

are essentially
the right and left regular representations ofC

∗

(G), the result follows easily.
The last statement is also straightforward (similar to Proposition 2.2).2

Remark. The above proposition implies that at least at the level of the dense
subalgebra of functions,B has an opposite algebra structure to that ofˆ

A.
Meanwhile, (4) above implies that( ˆ

A,

ˆ

1)

∼

=

(B,1

B

) as HopfC∗-algebras.
It turns out that working with(B,1

B

) andM
B

= M

ˆ

A

′ is more convenient
in our proof of Theorem 3.9. Here are a couple of lemmas that are useful in
Section 3. Similar results exist forˆA andM

ˆ

A

. We took light versions of the
proofs.

Lemma 6.4. LetM
A

andM
B

be the enveloping von Neumann algebras ofA

andB. We have:

(1) ̂U
A

∈ M

A

⊗M

B

.
(2) M

B

∩M

A

= C1.
(3) The linear spaceM

B

M

A

is σ -strongly dense inB(H).

Proof. The first statement is immediate from general theory, once we realize
(see previous proposition) that̂U

A

determinesB andA (as well asM
B

andM
A

).
We also have:̂U

A

∈ M(A⊗B). The remaining two results also follow from the
same realization. For instance, we could modify the proof of Proposition 2.5
of [24]. 2
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Lemma 6.5. On ˆ

A ⊆ B, consider a linear functionalϕ
B

defined by

ϕ

B

(λ

f

) =

∫

f (x, y,0) dxdy.

It can be extended to a faithful, semi-finite, normal weightϕ̃

B

onM
B

.

Remark. The idea for proof of this lemma is pretty much the same as the
early part of section 3 (butϕ

B

is no longer a trace). It turns out thatϕ
B

will be
an (invariant) Haar weight for(B,1

B

), although for our current purposes, this
result is not immediately necessary. We will make all these clear in our future
paper. Meanwhile, by a straightforward calculation using equation (6.1), we
see easily that:

ϕ

B

(λ

f

∗

λ

f

) = ‖f ‖

2
2.

This last result will be useful in the proof of Proposition 3.7.
Using multiplicative unitary operators, we can also give notions that are

analogous to “opposite dual” or “co-opposite dual” [11]. For a more careful
discussion on the duality, as well as on the notion of quantum double, refer to
our future paper.
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