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Abstract. We carry out the quantum double construction of the specific

quantum groups we constructed earlier, namely, the “quantum Heisenberg

group algebra” (A, ∆) and its dual (Â, ∆̂). Our approach is by constructing a

suitable multiplicative unitary operator, retaining the C∗-algebra framework

of locally compact quantum groups. We also discuss the dual of the quantum

double and the Haar weights on both of these double objects. Towards the

end, a construction of a (quasitriangular) “quantum universal R-matrix” is

given.

Introduction. The quantum double construction, which was originally in-
troduced by Drinfeld in the mid-80’s for (finite-dimensional) Hopf algebras [7], is
among the most celebrated methods of constructing non-commutative and non-
cocommutative Hopf algebras. Even in the case of an ordinary group, equivalently
for the algebra of (continuous) functions C(G), the quantum double construction
leads to an interesting crossed product algebra C(G) oαG, where α is the conju-
gation [20], [17].

We wish to carry out a similar construction in the framework of (C∗-algebraic)
locally compact quantum groups. This is not totally a new endeavor: As early
as in [23], Podles and Woronowicz has constructed their example of a quantum
Lorentz group, by considering the quantum double of the compact quantum group
SUµ(2); Baaj and Skandalis [1] have a version in the context of the multiplicative
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unitary operators; And more recently, Yamanouchi [28] has made this more sys-
tematic while Baaj and Vaes [2] consider a more generalized framework of double
crossed products.

On the other hand, as is the case for a lot of going-ons in the study of locally
compact quantum groups (especially for the non-compact ones), there have been
only a handful of work done on actual examples. In this paper, we make a modest
contribution by considering the case of the “quantum Heisenberg group algebra”
(A,∆) and the “quantum Heisenberg group” (Â, ∆̂), which are the specific, mu-
tually dual non-compact quantum groups we obtained previously (See [9], [12],
[11].). As we pointed out in a separate paper [14], the examples (A,∆) and (Â, ∆̂)
are similar, but actually different from (and more general than) the earlier known
examples by Rieffel [24] and by Van Daele [26]. We will obtain here the quantum
double object of (A,∆) and (Â, ∆̂), and show that the quantum double is also a
valid locally compact quantum group.

In addition to finding a new example of a quantum group and enriching the
duality picture between (A,∆) and (Â, ∆̂), there are other merits of studying the
quantum double. An interesting point is that the quantum double is not just an
algebraic object, but also a nice non-commutative geometric object of study: Note
that since the quantum double is obtained as a generalized crossed product, it
can be considered as a kind of a “quantized space”, while being a quantum group
means it is also “group-like”. It will be an interesting future research project to
further explore how these two different flavors arise together in our example.

At present, the goal of this paper is to give an actual construction of the
quantum double, give a concrete realization as an operator algebra on a specific
Hilbert space, establish it as a C∗-algebraic, locally compact quantum group in
the sense of Kustermans, Vaes [18], or of Masuda, Nakagami, Woronowicz [21].
Also constructed here are the dual object of the quantum double (again a locally
compact quantum group), and the “quantum universal R-matrix” type operator
for the quantum double.

Our construction method and techniques are strongly motivated by and are
based on the fundamental paper by Baaj and Skandalis [1]. Therefore, many of
the proofs are not genuinely new.

On the other hand, we note that the presentation given in [1], as well as the
ones in [28], [2], are somewhat less suitable for developing a rich connection with
the Poisson–Lie group theory. Our presentation is made hoping to improve this
situation. By explicitly working with a dense subalgebra of functions contained
in a C∗-algebra, we make it much easier to establish a link between the quantum
(C∗-algebra) setting and the classical (Poisson–Lie group) level.



QUANTUM DOUBLE CONSTRUCTION 3

The example we are studying may be considered a simple one from quantum
group theory point of view, but it is actually not so dull from quantization aspects
(Note that it comes from a certain non-linear Poisson bracket: See [9], [14].). The
results developed here will be helpful in our future work, where we plan to explore
the properties of the quantum double in relation to the Poisson geometric objects
like Lie bialgebras and dressing actions.

Here is how the paper is organized: In Section 1, we briefly summarize the
quantum double construction in the (finite-dimensional) Hopf algebra setting.
We generally follow Majid [20]. We will use this section as a guide for our main
construction in the C∗-algebra framework.

In Section 2, we describe the specific quantum groups (A,∆) and (Â, ∆̂), re-
viewing the results from our previous papers. Since the multiplicative unitary
operators will play a central role in the later sections, we chose to give characteri-
zations of (A,∆) and (Â, ∆̂) as subalgebras in B(H), via a multiplicative unitary
operator UA.

Our main construction of the quantum double D(A) = (AD ,∆D) is carried out
in Section 3. The definition is given in terms of multiplicative unitary operators,
but we provide justification that it is compatible with the definition in the purely
algebraic setting. Reflecting the fact that the quantum double construction is
closed in the category of “Kac algebras”, we note that the antipodal map SD for
our example satisfies SD2 ∼= Id. In Section 4, we look at the dual of the quantum
double (ÂD , ∆̂D). Here, ÂD ∼= A⊗Âop as a C∗-algebra, but its coalgebra structure
is twisted.

In Section 5, discussion is given on Haar weights for both of the dual objects
(ÂD , ∆̂D) and (AD ,∆D). We see that (ÂD , ∆̂D) is unimodular, while (AD,∆D)
is not. The existence of the legitimate Haar weights assures us that both are
(C∗-algebraic) locally compact quantum groups.

In Section 6, we find an operator R in the multiplier algebra M(AD ⊗ AD),
which can be considered as a “quantum universal R-matrix”. We only give its
construction here. Its possible applications to representation theory and its con-
nection with the Poisson structure at the classical limit level will be postponed
to a future occasion.

Terminology. Let H be a Hilbert space. A unitary operator V ∈ B(H⊗H)
is said to be multiplicative, if it satisfies the “pentagon equation”:

V12V13V23 = V23V12

(
∈ B(H⊗H⊗H)

)
.

Here, the notation V13 indicates that the operator V acts only on the first and
third copies of H, while letting the second copy unchanged. Similar comments
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hold for the others. For a systematic discussion on multiplicative unitary opera-
tors, see the paper by Baaj and Skandalis [1].

1. Quantum double in the purely algebraic framework

In this section, we will work only with finite-dimensional Hopf algebras. The
goal here is to collect some useful results from the purely algebraic setting, which
will guide us in our main construction at the level of (C∗-algebraic) locally com-
pact quantum groups. Most of the results below are standard ones. See, for
instance, [7], [22], [4], [20], [15].

Given a (finite-dimensional) Hopf algebra B, the quantum double D(B) is a
certain “double crossed product” algebra, D(B) = B∗op on B, where B∗op is same
as the dual Hopf algebra B∗ but equipped with the opposite multiplication. The
Hopf algebras B and B∗op mutually act by (generalized) coadjoint actions. A
more precise description is given below.

Definition 1. (1) The (left) coadjoint action of B on B∗op is defined by

f . φ = Ad∗
f (φ) =

∑
φ(2)

〈
f, (Sφ(1))φ(3)

〉
.

Similarly, we can define the coadjoint action / of B∗ on B, which we may
view as a right action of B∗op. That is,

f / φ = Ad∗
φ(f) =

∑
f(2)

〈
(Sf(1))f(3), φ

〉
.

(2) The “quantum double” D(B) = B∗op on B is such that as a space it is
isomorphic to B∗ ⊗B, and is equipped with the multiplication:

(φ ⊗ f) × (ψ ⊗ g) :=
∑

φ ·op (f(1) . ψ(1)) ⊗ (f(2) / ψ(2))g,

and the tensor product comultiplication:

∆D(φ⊗ f) :=
∑

φ(1) ⊗ f(1) ⊗ φ(2) ⊗ f(2).

In the above, we are using the standard Sweedler notation (See [22].). That
is, we write ∆f as ∆f =

∑
f(1) ⊗ f(2), and by the coassociativity we have:

(∆ ⊗ id)(∆f) = (id⊗∆)(∆f) =
∑
f(1) ⊗ f(2) ⊗ f(3). Since we are considering

finite-dimensional algebras, ⊗ denotes the algebraic tensor product. Meanwhile,
S is the antipode (co-inverse) and 〈 , 〉 is the dual pairing.

The verification of . and / being actions are not difficult, using the coasso-
ciativity and the property of the antipode map. As the name suggests, they are
generalizations of the coadjoint actions of groups (similar to taking conjugates).
The actions make B∗op as a B-module algebra, and B as a B∗op-module algebra.
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Moreover, (B∗op, B) forms a “matched pair” of Hopf algebras (in the sense of
Majid), from which the above definition of D(B) arises. See [19], [20] for details.

Remark. Instead of giving the definition of the quantum double in this way, we
could also formulate the definition in terms of a “skew-pairing” between the Hopf
algebras B and B∗op, which would be the more common approach. See [20], [15].
However, we chose to give our definition as in Definition 1 above, mainly to point
out prominently the two actions . and /.

We note also that above definition of D(B) is different from Drinfeld’s original
form [7], containing B and the “co-opposite dual” B∗cop. Ours is actually the one
proposed by Majid (Theorem 7.1.1 of [20]), which is easily shown to be equivalent
by using the antipode of B∗. There are also several other (equally valid) versions.
Throughout this paper, due to reasons related with possible future applications,
our preferred version of the quantum double D(B) will be as in Definition 1.

It is well known that the quantum double construction leads to a “quasi-
triangular” Hopf algebra. In case of D(B) as defined here, its quasitriangular
structure is given by R =

∑
j ψ

j ⊗ fj , where {fj} is a basis for B and {ψj} its
dual basis.

Before we wrap up, let us briefly mention a special case, which will be a motivat-
ing model. Consider an ordinary finite groupG. Let B = CG be the group algebra
of G, and B∗ = C(G) be the algebra of functions on G (note that B∗ = B∗op

for being commutative), with their natural Hopf algebra structures. Then D(B)
becomes the crossed product algebra C(G) o G, given by the conjugate action.
In the case of a locally compact group (not necessarily finite), this example was
studied by Koornwinder and Muller in [17], [16]. This is a rather simple situation,
but it has an interesting interpretation as an algebra of quantum observables of a
quantum system (in which a particle is constrained to move on conjugacy classes
in G). See Example 6.1.8 of [20]. Meanwhile, some genuine physical applica-
tions can be found in [6], [3], where the quantum double is used as a generalized
symmetry object.

2. The quantum Heisenberg group algebra (A,∆) and the quantum

Heisenberg group (Â, ∆̂)

We now turn our attention to the C∗-algebra setting. Specifically, let us con-
sider the non-compact quantum groups (A,∆) and (Â, ∆̂), which were constructed
in [9], [12], [11]. They are mutually dual locally compact quantum groups (in the
sense of [18] or [21]).
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As we saw in our previous papers, (A,∆) is regarded as a “quantum Heisenberg
group algebra” (i. e. “quantized C∗(H)”), while (Â, ∆̂) is viewed as a “quantum
Heisenberg group” (i. e. “quantized C0(H)”). Originally, they were obtained
by deformation quantization of the (mutually dual) pair of Poisson–Lie groups
(G,H), where H is the Heisenberg Lie group and G is its dual Poisson–Lie group
carrying a certain non-linear Poisson structure (See [9], for the description of the
non-linear Poisson bracket on G and the construction of (A,∆) as its deformation
quantization.).

However, for the purpose of this article, we will de-emphasize the deformation
process or the role of Poisson geometry. Instead, our descriptions of (A,∆) and
(Â, ∆̂) will be given in terms of a multiplicative unitary operator UA. We will
postpone to a separate occasion the discussion of the relationships between the
Poisson-Lie groups G, H , D = G on H (described in [10], [13]) and the quantum
groups A, Â, D(A) (to be constructed below).

Both C∗-algebras A and Â are realized as operator algebras contained in B(H).
Here the Hilbert space H is defined by L2(H/Z×H∗/Z⊥), whereH is the (2n+1)-
dimensional Heisenberg Lie group (considered naturally as a vector space); Z is
the center of H (which is a subspace of H); while H∗ is the dual vector space of H ;
and Z⊥ ⊆ H∗ is the orthogonal complement of the subspace Z. This means that
H is the space of L2-functions in the (x, y, r) variables, where (x, y) ∈ H/Z(∼= R2n)
and r ∈ H∗/Z⊥(∼= R). By partial Fourier transform in the r variable, we have:
H ∼= L2(H) as a Hilbert space.

Consider now the unitary operator UA ∈ B(H ⊗ H), as defined in Proposi-
tion 3.1 of [9] (See also Proposition 2.2 of [12]):

UAξ(x, y, r;x′, y′, r′) = (e−λr
′
)nē

[
ηλ(r′)β(e−λr

′
x, y′ − e−λr

′
y)

]

ξ(e−λr
′
x, e−λr

′
y, r + r′;x′ − e−λr

′
x, y′ − e−λr

′
y, r′).

Note here that we are using a fairly standard notation of e(t) = e2πit, so ē(t) =
e−2πit. And β( , ) is the usual inner product. On the other hand, we need some
explanation about the (fixed) constant λ ∈ R. It is the constant that determines
the aforementioned non-linear Poisson structure when λ 6= 0 (See [9].). The

expression ηλ(r) is defined such that ηλ(r) =
e2λr − 1

2λ
, which reflects the non-

linear flavor (When λ = 0, we take ηλ=0(r) = r which is linear.).
The unitary operator UA is multiplicative (satisfying the pentagon equation)

and is regular. Therefore, by following Baaj and Skandalis [1], we can define a
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pair of C∗-bialgebras (A,∆) and (Â, ∆̂). First, we have:

A =
{
(ω ⊗ id)(UA) : ω ∈ B(H)∗

}‖ ‖
,

where the L(ω) = (ω ⊗ id)(UA) are the “left slices” of UA by the linear forms
ω ∈ B(H)∗.

For an alternative characterization of A, consider A, which is the space of
Schwartz functions in the (x, y, r) variables having compact support in r. There
is the following “regular representation” L of A, on B(H).

(Lf ξ)(x, y, r) :=
∫
f(x̃, ỹ, r)ξ(x − x̃, y − ỹ, r)ē

[
ηλ(r)β(x̃, y − ỹ)

]
dx̃dỹ.

We have shown in [12] that A = L(A)
‖ ‖

. This means that A is a (norm dense) ∗-
subalgebra of A, and we can regard the functions f ∈ A same as the operators Lf .
More specifically, the multiplication and the involution on A take the following
form (given by Lf×g = LfLg and Lf∗ = (Lf )∗).

(f ×A g)(x, y, r) =
∫
f(x̃, ỹ, r)g(x− x̃, y − ỹ, r)ē

[
ηλ(r)β(x̃, y − ỹ)

]
dx̃dỹ,(2.1)

f∗(x, y, r) = ē
[
ηλ(r)β(x, y)

]
f(−x,−y, r).

Meanwhile, the multiplicative unitary operator also defines the comultiplication
∆ : A → M(A ⊗ A). For a ∈ A, we define ∆a by ∆a = UA(a ⊗ 1)UA∗. At the
level of functions in A, the equation ∆(Lf ) = (L⊗L)(∆f) gives us the following:

(∆f)(x, y, r;x′, y′, r′)(2.2)

=
∫
f(x′, y′, r + r′)ē

[
p̃ · (eλr

′
x′ − x) + q̃ · (eλr

′
y′ − y)

]
dp̃dq̃,

which is a Schwartz function having compact support in r and r′.
There is also the antipodal map S : A → A, defined by S(a) = Ĵa∗Ĵ , where Ĵ

is the following involutive operator on H.

Ĵξ(x, y, r) = (eλr)nξ(eλrx, eλry,−r).

See Proposition 2.4 of [12]. Then S(Lf ) = LS(f) gives us the following:

(2.3)
(
S(f)

)
(x, y, r) = (e2λr)nē

[
ηλ(r)β(x, y)

]
f(−eλrx,−eλry,−r),

at the level of functions in A.
Turning our focus to the dual object of (A,∆), we now consider the “right

slices” of UA. That is, let us now consider the C∗-algebra Â generated by the
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operators ρ(ω) = (id⊗ω)(UA), for ω ∈ B(H)∗. We have:

Â =
{
(id⊗ω)(UA) : ω ∈ B(H)∗

}‖ ‖
.

The comultiplication ∆̂ : Â→ M(Â⊗ Â) is given by ∆̂b = UA
∗(1 ⊗ b)UA.

There is also an alternative characterization of Â. For this, consider Â, which
is again the space of Schwartz functions in the (x, y, r) variables having compact
support in r. Define the “regular representation” ρ of Â on B(H), given by

(ρφξ)(x, y, r) :=
∫

(eλr̃)nφ(x, y, r̃)ξ(eλr̃x, eλr̃y, r − r̃) dr̃.

We saw in [11] that Â = ρ(Â)
‖ ‖

. As before, we can regard the functions φ ∈ Â
same as the operators ρφ, and Â is considered as a dense ∗-subalgebra of Â. On Â,
the multiplication and the involution take the following form (via ρφ×ψ = ρφρψ
and ρφ∗ = (ρφ)∗).

(φ×Â ψ)(x, y, r) =
∫
φ(x, y, r̃)ψ(eλr̃x, eλr̃y, r − r̃) dr̃,(2.4)

φ∗(x, y, r) = φ(eλrx, eλry,−r).

Meanwhile, we have the following description of the comultiplication, obtained
by the equation ∆̂(ρφ) = (ρ⊗ ρ)(∆̂φ).

(∆̂φ)(x, y, r;x′, y′, r′)(2.5)

=
∫
φ(x+ x′, y + y′, r̃)e

[
ηλ(r̃)β(x, y′)

]
e
[
r̃(z + z′)

]
ē[zr + z′r′] dr̃dzdz′.

The antipode Ŝ : Â → Â is given by Ŝ = Jb∗J , where J is the operator on H
defined by

Jξ(x, y, r) = ē
[
ηλ(r)β(x, y)

]
ξ(−x,−y, r).

Then at the level of functions in Â, the expression Ŝ(ρφ) = ρŜ(φ) gives us the
following:

(2.6)
(
Ŝ(φ)

)
(x, y, r) = ē

[
ηλ(r)β(x, y)

]
φ(−eλrx,−eλry,−r).

We have further shown in our previous papers that the two C∗-bialgebras
(A,∆) and (Â, ∆̂) are indeed examples of non-compact, C∗-algebraic quantum
groups (together with the necessary ingredients like Haar weights). They are
mutually dual objects in the framework of locally compact quantum groups. See
[12] and [11]. Since the square of the antipode map is identity for both of them
(which can be easily seen from the definitions of S and Ŝ given above), they are
cases of Kac C∗-algebras (as in [25]).
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Unlike in the purely algebraic or finite-dimensional setting, no proper dual
pairing exists between A and Â. However, at least at the level of the dense
subalgebras A and Â, there does exist a suitable dual pairing, defined as follows:

(2.7) 〈f, φ〉 =
∫
f(x, y, r)φ(eλrx, eλry,−r) dxdydr,

for f(= Lf ) ∈ A and φ(= ρφ) ∈ Â. See Proposition 3.1 of [11], which is just
an immediate consequence of Definition 1.3 of [1]. As we have shown in Proposi-
tion 3.1 of [11], this dual pairing satisfies all the necessary properties for it to be
considered as the correct analog of the pairing in the (purely algebraic) framework
of Hopf algebras.

Since we are planning to construct the quantum double, we also need to clarify
the “opposite” and “co-opposite” versions of (A,∆) and (Â, ∆̂), again in the C∗-
algebra framework. For this purpose, it is useful to know that we can form a
Kac system (in the sense of Baaj and Skandalis) from our multiplicative unitary
operator UA. The following observation was made in Section 3 of [11].

Proposition 2.1. Let j ∈ B(H) be defined by j = ĴJ = JĴ , where J and Ĵ

are the anti-unitary operators as appeared in the definitions of the antipode maps.
Then j is an (involutive) unitary operator given by

jξ(x, y, r) = (eλr)nē
[
ηλ(r)β(x, y)

]
ξ(−eλrx,−eλry,−r).

Moreover, the triple (H, UA, j) forms a “Kac system” (as in Section 6 of [1]). In
particular, the following unitary operators are all multiplicative:

UA ∈M(Â⊗A),

ÛA = Σ(j ⊗ 1)UA(j ⊗ 1)Σ ∈M(A⊗ Âop),

ŨA = (j ⊗ j)ÛA(j ⊗ j) = (j ⊗ 1)(ΣUAΣ)(j ⊗ 1) ∈M(Aop ⊗ Â),

̂̂
UA = ˜̃

UA = (j ⊗ j)UA(j ⊗ j) ∈ M(Âop ⊗Aop),

where Σ denotes the flip.

Remark. The results may be checked by a direct computation (See Proposition 3.2
of [11].). But this proposition is really due to the properties of the (anti-unitary)
operators J and Ĵ . See also 6.11 (d) of [1].

Using the multiplicative unitary operators UA and its variations obtained in
the above proposition, we can define several different versions of the quantum
Heisenberg group algebra and the quantum Heisenberg group, in the form of
(Aop,∆), (A,∆cop), (Aop,∆cop), as well as (Âop, ∆̂), (Â, ∆̂cop), (Âop, ∆̂cop).
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For instance, (Âop, ∆̂) is determined by the multiplicative unitary operator
X = ΣÛA

∗
Σ. To be more precise, we have:

Âop =
{
(id⊗ω)(X) : ω ∈ B(H)∗

}‖ ‖
= λ(Â)

‖ ‖ (
⊆ B(H)

)
,

where λ : Â → B(H) is defined by

(λφξ)(x, y, r) :=
∫
φ(eλr̃x, eλr̃y, r − r̃)ξ(x, y, r̃) dr̃.

Notice that λφλψ = λψ×φ, implementing the opposite multiplication. The comul-
tiplication, given by Âop 3 b 7→ X∗(1 ⊗ b)X ∈ M(Âop ⊗ Âop), stays the same
at the function level: That is, X∗(1 ⊗ λφ)X = (λ ⊗ λ)(∆̂φ), where ∆̂φ is same

as in equation (2.5). The antipode also stays the same: Ŝ(λφ) = λŜ(φ), as in
equation (2.6).

We only gave here one possible description of (Âop, ∆̂), since Âop is the one
we immediately need for the definition of our quantum double. But See Proposi-
tion 3.5 of [11] for the others.

3. The quantum double

Since we know the expressions for various operations on A and Â (the equations
(2.1), (2.2), (2.3), and (2.4), (2.5), (2.6)), as well as the expression for the dual
pairing between them given by equation (2.7), we can use Definition 1 to write
down the product on the quantum double, at the level of functions in A�Â [the
algebraic tensor product, without any completion]. So we have:

(
(φ ⊗ f) × (ψ ⊗ g)

)
(x, y, r;x′, y′, r′)

(3.1)

=
∫
φ(eλr̃x, eλr̃y, r − r̃)ψ(x − eλ(r′−r̃)x̃+ e−λr̃x̃, y − eλ(r′−r̃)ỹ + e−λr̃ỹ, r̃)

ē
[
ηλ(r′)β(e−λr̃x̃, y′)

]
e
[
ηλ(r̃)β(x, e−λr̃ ỹ)

]
ē
[
ηλ(r̃)β(eλ(r′−r̃)x̃, y)

]

e[ηλ(r′)β(x̃, ỹ)
]
e
[
ηλ(r̃)β(e−λr̃x̃, e−λr̃ỹ)

]
ē
[
ηλ(r̃)β(eλ(r′−r̃)x̃, e−λr̃ỹ)

]

f(x̃, ỹ, r′)g(x′ − e−λr̃x̃, y′ − e−λr̃ỹ, r′) dx̃dỹdr̃.

Here, φ, ψ ∈ Â and f, g ∈ A. Computation is rather long, but not really difficult.
However, for us to be able to define D(A) properly at the C∗-algebra level, it

is again best to work with the multiplicative unitary operators. Since we wish to
construct an object that will be considered as containing (A,∆) and its “opposite
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dual” (Âop, ∆̂), with some actions involved, let us define the following unitary
operator:

(3.2) VD = Z12Y24Z
∗
12X13 ∈ B(H⊗H⊗H ⊗H).

Here X = ΣÛA
∗
Σ is as defined in the previous section, Y = ΣX∗Σ = ÛA, while

Z = Y ∗ ̂̂
Y = ̂̂

Y Y ∗ (We can see easily from Proposition 2.1 that Y ∈ M(A⊗ Âop)

and ̂̂
Y ∈ M(Aop ⊗ Â). See also Corollary of Proposition 3.5 of [11].). The leg

numbering notation is as before.
Main motivation for our choice comes from Section 8 of [1], and the formulation

is essentially equivalent to the ones given in [28], [2] (though slightly different).
Roughly speaking, the operator X gives (Âop, ∆̂) (as we saw in Section 2), the
operator Y gives (A,∆) (as in Proposition 3.5 of [11]), and the operator Z enables
us to encode the generalized coadjoint actions. See Proposition 3.2 below, which
comes after the following short lemma:

Lemma 3.1. For any a ∈ A and b ∈ Âop, we have:

Z(a⊗ b)Z∗ = Y ∗(a⊗ b)Y.

Proof. The proof easily follows from the fact that Z = Y ∗ ̂̂
Y = ̂̂

Y Y ∗, while

Y ∈ M(A ⊗ Âop) and ̂̂
Y ∈ M(Aop ⊗ Â). Actually, the result will still hold if

a ∈M(A) and b ∈M(Âop). �

Proposition 3.2. Let Z = Y ∗ ̂̂
Y = ̂̂

Y Y ∗ ∈ B(H ⊗ H) be the operator defined
above. Explicitly,

Zξ(x, y, r;x′, y′, r′) = ē
[
ηλ(r)β(eλr

′
x′, y − eλr

′
y′)

]
e
[
ηλ(r)β(x − eλr

′
x′, y′)

]

(eλr)n ξ(x − eλr
′
x′ + x′, y − eλr

′
y′ + y′, r; eλrx′, eλry′, r′).

Let α : A→M(Âop ⊗A) and α′ : Âop → M(Âop ⊗A) be defined by

α(a) := ΣZ∗(a⊗ 1)ZΣ and α′(b) := ΣZ∗(1 ⊗ b)ZΣ.

Then α is a left coaction of (A,∆) on the C∗-algebra Âop, while α′ is a right
coaction of (Âop, ∆̂) on A. That is, the maps α and α′ are non-degenerate ∗-
homomorphisms such that:

(∆̂ ⊗ id)α = (id⊗α)α and (id⊗∆)α′ = (α′ ⊗ id)α′.
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Proof. Let a ∈ A. Then we have:

(id⊗α)α(a) = Σ23Z
∗
23Σ12Z

∗
12(a⊗ 1 ⊗ 1)Z12Σ12Z23Σ23

= Σ23Y23Σ12Y12(a⊗ 1 ⊗ 1)Y ∗
12Σ12Y

∗
23Σ23

= X∗
23Σ23X

∗
12Σ12(a⊗ 1 ⊗ 1)Σ12X12Σ23X23

= X∗
23X

∗
13(1 ⊗ 1 ⊗ a)X13X23.

In the second equality, we are using Lemma 3.1. And in the third equality, we
use Y = ΣX∗Σ. On the other hand, remembering that ∆̂(b) = X∗(1 ⊗ b)X , for
b ∈ Âop, we have:

(∆̂ ⊗ id)α(a) = X∗
12Σ23Z

∗
23(1 ⊗ a⊗ 1)Z23Σ23X12

= X∗
12X

∗
23Σ23(1 ⊗ a⊗ 1)Σ23X23X12

= X∗
12X

∗
23(1 ⊗ 1 ⊗ a)X23X12

= X∗
23X

∗
13X

∗
12(1 ⊗ 1 ⊗ a)X12X13X23

= X∗
23X

∗
13(1 ⊗ 1 ⊗ a)X13X23.

We again used Lemma 3.1 and Y = ΣX∗Σ in the second equality above. In
the fourth equality, the multiplicativity of X (satisfying the pentagon equation:
X12X13X23 = X23X12) was used. In this way, we show that: (∆̂ ⊗ id)α =
(id⊗α)α.

To prove the condition for α′, we may use the fact that ∆a = Y ∗(1⊗ a)Y , for
a ∈ A (see Proposition 3.5 of [11]), and proceed similarly as above. �

Remark. The coactions α and α′ are essentially “coadjoint coactions”, which
(dually) correspond to the “coadjoint actions” given in Definition 1. Indeed, at
least at the level of functions in A and Â, it is possible to show that:

〈
α(a), f ⊗ φ

〉
= 〈a, f . φ〉 and

〈
α′(b), f ⊗ φ

〉
= 〈b, f / φ〉,

where a, f ∈ A and b, φ ∈ Â, while 〈 , 〉 is the dual pairing given in equation (2.7).

In the ensuing paragraphs, we will show that the operator VD as defined in
equation (3.2) is actually multiplicative, and make our case that the C∗-bialgebra
it determines is exactly the quantum double D(A) we are looking for. In partic-
ular, we will see that the C∗-algebra contains as a dense subalgebra Â �A, with
its product defined in equation (3.1).

The multiplicativity of VD (i. e. satisfying the “pentagon equation”) could be
shown directly, but the computation will be rather long and tedious due to the
fact that we have to work with 18 variables. So we present here an alternative
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way, where the crucial point is that the operatorsX and Y give rise to a “matched
pair” (See Definition 8.13 of [1]) of Kac systems.

Lemma 3.3. Let the notation be as above.

(1) The triples (H, X, j) and (H, Y, j), together with the operator Z, form a
matched pair of Kac systems.

(2) The operator V := Z∗
12X13Z12Y24 is multiplicative.

(3) Z34V = Z34Z
∗
12X13Z12Y24 = Y24Z

∗
12X13Z12Z34.

Proof. (1) is the result of Theorem 8.17 of [1], from which the multiplicativity
of V follows (By Definition 8.15 of [1], the operator V determines the “Z-tensor
product” of the matched pair.). See also our Proposition 4.2 and Corollary 4.3 in
Section 4 below. Meanwhile, by Proposition 8.10 of [1], condition (2) is equivalent
to condition (3) (We can also check (3) directly from the definitions.). �

Corollary 3.4. The unitary operator VD defined in (3.2) is multiplicative.

Proof. By (3) of Lemma 3.3, we have: Z12Z34V Z
∗
34Z

∗
12 = Z12Y24Z

∗
12X13 = VD .

Re-writing this expression as VD = (Z ⊗ Z)V (Z∗ ⊗ Z∗) and noting that Z is
unitary, we see clearly that VD is also a multiplicative unitary operator (by being
unitarily equivalent to V ). �

By the general theory of multiplicative unitary operators [1], [27], the operator
VD will let us define a C∗-bialgebra, on which we build the necessary ingredients
for it to become a locally compact quantum group. Specifically, let us consider
the C∗-bialgebra (AD,∆D), which is generated by the “right slices” of VD , as
follows:

Definition 2. Let AD be the C∗-algebra contained in B(H⊗H), defined by

AD =
{
(id⊗ id⊗Ω)(VD) : Ω ∈ B(H⊗H)∗

}‖ ‖
.

Let us also define the comultiplication ∆D : AD → M(AD ⊗ AD), by ∆D(x) :=
VD

∗(1⊗1⊗x)VD, for x ∈ AD. It is a non-degenerate C∗-homomorphism satisfying
the coassociativity condition: (∆D ⊗ id)∆D = (id⊗∆D)∆D . So AD is a C∗-
bialgebra. Moreover, ∆D(AD)(AD ⊗ 1) and ∆D(AD)(1 ⊗AD) are dense subsets
in AD ⊗AD.

For the last statement (the density conditions), see Theorem 1.5 and Section 5
of [27] (It is a non-trivial result.). Our goal now is to show that (AD,∆D) is
exactly the quantum double D(A), analogous to Definition 1. Let us first give a
more concrete C∗-algebraic realization of AD .
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Proposition 3.5. Let π : A → B(H⊗H) and π′ : Âop → B(H⊗H) be defined
by

π(a) := Z(1 ⊗ a)Z∗ and π′(b) := b⊗ 1.

Then AD is the C∗-algebra generated by the operators π(a)π′(b), for a ∈ A,
b ∈ Âop.

Proof. For ω, ω′ ∈ B(H)∗, we have:

(id⊗ id⊗ω ⊗ ω′)(VD) = (id⊗ id⊗ω ⊗ ω′)(Z12Y24Z
∗
12X13)

= Z
[
1 ⊗ (id⊗ω′)(Y )

]
Z∗[(id⊗ω)(X) ⊗ 1

]
= π(a)π′(b),

where a = (id⊗ω′)(Y ) and b = (id⊗ω)(X). This is valid, because by Proposi-
tion 3.5 (2) of [11] and by Section 6 (Appendix) of [12], we have: a = (id⊗ω′)(Y ) =
(id⊗ω′)(ÛA) ∈ A and b = (id⊗ω)(X) = (id⊗ω)(ΣÛA

∗
Σ) ∈ Âop. In fact, the

operators (id⊗ω′)(Y ), ω′ ∈ B(H)∗, generate A; while the operators (id⊗ω)(X),
ω ∈ B(H)∗, generate Âop.

Since the operators (id⊗ id⊗ω⊗ω′)(VD) generate AD (Definition 2), the result
of the proposition follows. �

Corollary 3.6. The maps π and π′ are C∗-algebra homomorphisms. Namely,

π : A→M(AD) and π′ : Âop →M(AD).

Remark. The corollary is obvious from the definitions of π and π′. Here, M(AD)
denotes the multiplier algebra of AD . Later, when we clarify the co-algebra
structure on AD , they will actually become C∗-bialgebra homomorphisms.

Proposition 3.7. Let Π : Â � A → B(H⊗H) be defined by

Π(φ ⊗ f) := π′(λφ)π(Lf ), for φ ∈ Â, f ∈ A.

Then AD = Π(Â � A)
‖ ‖

.

Proof. We know from Section 2 that A = L(A)
‖ ‖

and Âop = λ(Â)
‖ ‖

. So this
result is an immediate consequence of Proposition 3.5, with the aid of the fact
that the C∗-algebras are closed under involution. �

We observe that Π above determines a multiplication on Â � A, given by
Π(φ ⊗ f)Π(ψ ⊗ g) = Π

(
(φ ⊗ f) × (ψ ⊗ g)

)
, making Â � A a (dense) subalgebra

of AD. It turns out that the product obtained in this way exactly coincides with
the one given in (3.1). See below.
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Proposition 3.8. Let Â � A be given the multiplication, as in (3.1). Then we
have:

Π(φ⊗ f)Π(ψ ⊗ g) = Π
(
(φ⊗ f) × (ψ ⊗ g)

)
,

for φ, ψ ∈ Â and f, g ∈ A.

Proof. For φ ∈ Â and ξ ∈ H⊗H,

π′(λφ)ξ(x, y, r;x′, y′, r′) = (λφ ⊗ 1)ξ(x, y, r;x′, y′, r′)

=
∫
φ(eλr̃x, eλr̃y, r − r̃)ξ(x, y, r̃;x′, y′, r′) dr̃.

Whereas for f ∈ A and ξ ∈ H⊗H,

π(Lf )ξ(x, y, r;x′, y′, r′) = Z(1 ⊗ Lf )Z∗ξ(x, y, r;x′, y′, r′)

= (eλr)n ē
[
ηλ(r)β(eλr

′
x′, y − eλr

′
y′)

]
e
[
ηλ(r)β(x − eλr

′
x′, y′)

]

(1 ⊗ Lf )Z∗ξ(x− eλr
′
x′ + x′, y − eλr

′
y′ + y′, r; eλrx′, eλry′, r′)

=
∫

(eλr)n ē
[
ηλ(r)β(eλr

′
x′, y − eλr

′
y′)

]
e
[
ηλ(r)β(x − eλr

′
x′, y′)

]

f(x̃, ỹ, r′)ē
[
ηλ(r′)β(x̃, eλry′ − ỹ)

]

Z∗ξ(x− eλr
′
x′ + x′, y − eλr

′
y′ + y′, r; eλrx′ − x̃, eλry′ − ỹ, r′) dx̃dỹ

= (· · · )

=
∫
f(x̃, ỹ, r′)ē

[
ηλ(r′)β(e−λrx̃, y′)

]
e
[
ηλ(r)β(x, e−λr ỹ)

]
ē
[
ηλ(r)β(eλr

′−λrx̃, y)
]

e
[
ηλ(r′)β(x̃, ỹ)

]
e
[
ηλ(r)β(e−λr x̃, e−λrỹ)

]
ē
[
ηλ(r)β(eλr

′−λrx̃, e−λrỹ)
]

ξ(x− eλr
′−λrx̃+ e−λrx̃, y − eλr

′−λrỹ + e−λrỹ, r;x′ − e−λrx̃, y′ − e−λrỹ, r′) dx̃dỹ.

So we have:

Π(φ⊗ f)ξ(x, y, r;x′, y′, r′) = π′(λφ)π(Lf )ξ(x, y, r;x′, y′, r′)

=
∫
φ(eλr̃x, eλr̃y, r − r̃)f(x̃, ỹ, r′)ē

[
ηλ(r′)β(e−λr̃x̃, y′)

]

e
[
ηλ(r̃)β(x, e−λr̃ ỹ)

]
ē
[
ηλ(r̃)β(eλr

′−λr̃x̃, y)
]

e[ηλ(r′)β(x̃, ỹ)
]
e
[
ηλ(r̃)β(e−λr̃x̃, e−λr̃ỹ)

]
ē
[
ηλ(r̃)β(eλr

′−λr̃x̃, e−λr̃ỹ)
]

ξ(x− eλr
′−λr̃x̃+ e−λr̃x̃, y − eλr

′−λr̃ỹ + e−λr̃ỹ, r̃;x′ − e−λr̃x̃, y′ − e−λr̃ỹ, r′) dx̃dỹdr̃.

Using this and noting its resemblance to equation (3.1), we can see without trouble
that: Π(φ ⊗ f)Π(ψ ⊗ g)ξ = Π

(
(φ⊗ f) × (ψ ⊗ g)

)
ξ, for any ξ ∈ H ⊗H. �
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The involution on AD is inherited from that of B(H⊗H). At the level of the
subalgebra Â � A, it takes the following form:

(φ⊗ f)∗(x, y, r;x′, y′, r′)(3.3)

= (e2λr)nf(−eλrx′,−eλry′, r′)e
[
ηλ(r)β(x, y′)

]
ē
[
ηλ(r)β(eλr

′
x′, y)

]

ē
[
ηλ(r′ − r)β(eλrx′, eλry′)

]
ē
[
ηλ(r)β(eλr

′
x′, y′)

]

φ(eλrx− eλr′+λrx′ + eλrx′, eλry − eλr′+λry′ + eλry′,−r).

To be more precise, the definition of (φ⊗ f)∗ ∈ Â �A above has been chosen so
that we have: Π

(
(φ⊗ f)∗

)
=

[
Π(φ⊗ f)

]∗ = π(Lf )∗π′(λφ)∗.
Next, let us turn our attention to the co-algebra structure on AD . As in

the previous proposition, we will see that at the level of functions in Â � A,
the comultiplication on AD exactly coincides with the one on D(A), as given in
Definition 1.

Proposition 3.9. For φ ∈ Â and f ∈ A, we have:

∆D

(
Π(φ ⊗ f)

)
= ∆D

(
π′(λφ)π(Lf )

)
=

[
(π′ ⊗ π′)(∆̂φ)

][
(π ⊗ π)(∆f)

]

= (Π ⊗ Π)
(∑

φ(1) ⊗ f(1) ⊗ φ(2) ⊗ f(2)

)
.

Proof. Note that by Definition 2, we have:

∆D

(
π′(λφ)π(Lf )

)
= VD

∗(1 ⊗ 1 ⊗ π′(λφ)π(Lf )
)
VD

=
[
VD

∗(1 ⊗ 1 ⊗ π′(λφ)
)
VD

][
VD

∗(1 ⊗ 1 ⊗ π(Lf )
)
VD

]
.

But by definition of VD and by definition of π′, we have:

VD
∗(1 ⊗ 1 ⊗ π′(λφ)

)
VD = X∗

13Z12Y
∗
24Z

∗
12(1 ⊗ 1 ⊗ λφ ⊗ 1)Z12Y24Z

∗
12X13

= X∗
13(1 ⊗ 1 ⊗ λφ ⊗ 1)X13

=
[
(λ⊗ λ)(∆̂φ)

]
13

= (π′ ⊗ π′)(∆̂φ).

Similarly,

VD
∗(1 ⊗ 1 ⊗ π(Lf )

)
VD = X∗

13Z12Y
∗
24Z

∗
12

[
Z34(1 ⊗ Lf )34Z∗

34

]
Z12Y24Z

∗
12X13

= Z12Z34Y
∗
24Z

∗
12X

∗
13

[
(1 ⊗ Lf )

]
34
X13Z12Y24Z

∗
34Z

∗
12

= Z12Z34Y
∗
24

[
(1 ⊗ 1 ⊗ 1 ⊗ Lf )

]
Y24Z

∗
34Z

∗
12

= Z12Z34

[
(L⊗ L)(∆f)

]
24
Z∗

34Z
∗
12 = (π ⊗ π)(∆f).

In the second equality above, we used the result of Lemma 3.3 (3).
Combining these results, we prove the proposition. �
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Corollary 3.10. The maps π : A→M(AD) and π′ : Âop →M(AD), as defined
earlier, are C∗-bialgebra homomorphisms.

Proof. We already know from Corollary 3.6 earlier that π and π′ are C∗-algebra
homomorphisms. Meanwhile, from the proof of Proposition 3.9, we see that:
(π ⊗ π) ◦ ∆ = ∆D ◦ π, and (π′ ⊗ π′) ◦ ∆̂ = ∆D ◦ π′. �

Propositions 3.7, 3.8, 3.9 support our assertion that (AD ,∆D) is indeed the C∗-
algebraic analog of the quantum doubleD(A) = Âop on A, as given in Definition 1.
To continue with our construction, we next define the antipodal map SD on AD .

Lemma 3.11. With the notation as in Section 2, we have:

Z(J ⊗ Ĵ) = (J ⊗ Ĵ)Z and Z(Ĵ ⊗ J) = (Ĵ ⊗ J)Z∗.

Remark. The results of the lemma can be shown by a straightforward calculation.
Only the first result is immediately needed, but the second result will be useful
in Section 4.

Proposition 3.12. Let ĴD be the involutive operator in B(H ⊗ H) defined by
ĴD := J ⊗ Ĵ . Then let SD : AD → AD by

SD(x) := ĴDx
∗ĴD = (J ⊗ Ĵ)x∗(J ⊗ Ĵ).

In particular, if f ∈ A and φ ∈ Â, we have:

SD
(
Π(φ⊗ f)

)
= SD

(
π′(λφ)π(Lf )

)
= π

(
S(Lf )

)
π′(Ŝ(λφ)

)
.

This defines the “antipode” on AD. It is an anti-automorphism on AD, satisfying:
SD

(
SD(x)∗

)∗ = x and (SD ⊗ SD)
(
∆D(x)

)
= ∆D

cop(SD(x)), for x ∈ AD. Here
∆D

cop = χ2↔4
1↔3 ◦ ∆D, where χ denotes the flip.

Proof. For f ∈ A and φ ∈ Â,

SD
(
π′(λφ)π(Lf )

)
= (J ⊗ Ĵ)

(
π′(λφ)π(Lf )

)∗(J ⊗ Ĵ)

= (J ⊗ Ĵ)π(Lf ∗)π′(λφ∗)(J ⊗ Ĵ)

= (J ⊗ Ĵ)Z(1 ⊗ Lf
∗)Z∗(λφ∗ ⊗ 1)(J ⊗ Ĵ)

= Z(1 ⊗ ĴLf
∗Ĵ)(J ⊗ Ĵ)Z∗(J ⊗ Ĵ)(Jλφ∗J ⊗ 1)

= Z(1 ⊗ ĴLf
∗Ĵ)Z∗(Jλφ∗J ⊗ 1) = π

(
S(Lf )

)
π′(Ŝ(λφ)

)
.

In the fourth and fifth equalities, we used the result of Lemma 3.11. In the last
equality, we used the definitions of S and Ŝ, given in terms of Ĵ and J (See
Section 2.).
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By definition, it is easy to see that SD is an anti-automorphism and also
that SD

(
SD(x)∗

)∗ = x, for x ∈ AD . The last statement is also easy to verify,
remembering the corresponding properties of S and Ŝ. For instance, for f ∈ A
and φ ∈ Â, we have:

(SD ⊗ SD)
(
∆D(Π(φ ⊗ f))

)

= (SD ⊗ SD)
(
[(π′ ⊗ π′)(∆̂φ)][(π ⊗ π)(∆f)]

)

= (π ⊗ π)
(
(S ⊗ S)(∆f)

)
(π′ ⊗ π′)

(
(Ŝ ⊗ Ŝ)(∆̂φ)

)

=
[
(π ⊗ π)

(
∆cop(S(f))

)][
(π′ ⊗ π′)

(
∆̂cop(Ŝ(φ))

)]

= ∆D
cop

(
π(S(f))π′(Ŝ(φ))

)
= ∆D

cop
(
SD(Π(φ ⊗ f))

)
.

The third equality follows from the properties of S (in Proposition 2.4 of [12]) and
of Ŝ (in Proposition 2.4 of [11]). The fourth equality follows from Proposition 3.9.

�

For SD to be correctly considered an antipode of (AD,∆D), we further need the
notion of Haar weight clarified. This will be done later in this paper (in Section 5).
But for our immediate purposes, result of Proposition 3.12 is sufficient. In fact,
it is not difficult to show that the definition of SD given above is equivalent to
the map,

SD : (id⊗ id⊗Ω)(VD) 7→ (id⊗ id⊗Ω)(VD∗),

for Ω ∈ B(H ⊗ H)∗. The general theory assures us that once we establish the
existence of the Haar weight, this map actually characterizes the antipode (See
[1], [27], [18].).

According to the general theory of locally compact quantum groups [18], [21],
the antipode allows the “polar decomposition”. In our case, with SD being an
anti-automorphism, its polar decomposition is trivial: That is, SD ≡ RD (the
“unitary antipode”), and τD ≡ Id (the “scaling group”). These observations, in
addition to the fact that SD2 ≡ Id, manifests that AD is essentially a Kac C∗-
algebra (in the sense of [25]). This is to be expected, since (A,∆) and (Â, ∆̂) are
also as such.

4. The dual of the quantum double

In the previous section, we considered the quantum double (AD ,∆D), together
with its “antipode” SD, all within the C∗-algebra framework. The discussion on
its Haar weight (thereby establishing it as a locally compact quantum group) will
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be postponed until Section 5. In the present section, we will consider the dual
object of (AD ,∆D).

As we can expect from the way AD was constructed in Definition 2 (via the
multiplicative unitary operator VD), the dual object will be obtained by consid-
ering the “left slices” of VD, as follows (See again, [1], [27].):

Definition 3. Let ÂD be the C∗-algebra contained in B(H⊗H), defined by

ÂD =
{
(Ω ⊗ id⊗ id)(VD) : Ω ∈ B(H⊗H)∗

}‖ ‖
.

In addition, define the comultiplication ∆̂D : ÂD →M(ÂD ⊗ ÂD) by

∆̂D(y) := VD(y ⊗ 1 ⊗ 1)VD∗, for y ∈ ÂD.

It is a non-degenerate C∗-homomorphism satisfying the coassociativity condition:
(∆̂D⊗ id)∆̂D = (id⊗∆̂D)∆̂D . As before, ∆̂D(ÂD)(ÂD⊗1) and ∆̂D(ÂD)(1⊗ÂD)
are dense subsets in ÂD ⊗ ÂD .

By the multiplicativity of VD , we know that (ÂD , ∆̂D) is a C∗-bialgebra, dual
to (AD ,∆D). Let us now find a more explicit realization of (ÂD , ∆̂D). The proof
is adapted from Proposition 8.14 of [1].

Proposition 4.1. As a C∗-algebra, we have:

ÂD =
{
(Ω ⊗ id⊗ id)

(
Y24(f ⊗ φ⊗ 1 ⊗ 1)X13

)
: Ω ∈ B(H⊗H)∗, f ∈ A, φ ∈ Âop

}‖ ‖

= A⊗ Âop.

Proof. Given Ω ∈ B(H ⊗ H)∗ and for arbitrary a ∈ A, b ∈ Âop, define Ω̃ ∈
B(H ⊗ H)∗ by Ω̃ := (1 ⊗ b)Ω(a ⊗ 1)Z∗. In particular, if Ω = Ωξ,η (This is a
standard notation: Ωξ,η(T ) = 〈Tξ, η〉, for T ∈ B(H⊗H) and ξ, η ∈ H⊗H.), then
we will have: Ω̃ξ,η(T ) =

〈
(a⊗1)Z∗T (1⊗b)ξ, η

〉
. With the new notation, we have:

(Ω̃ ⊗ id⊗ id)(VD) = (Ω̃ ⊗ id⊗ id)(Z12Y24Z
∗
12X13)

= (Ω ⊗ id⊗ id)
(
(a⊗ 1 ⊗ 1 ⊗ 1)Y24Z

∗
12X13(1 ⊗ b⊗ 1 ⊗ 1)

)

= (Ω ⊗ id⊗ id)
(
Y24(a⊗ 1 ⊗ 1 ⊗ 1)Z∗

12(1 ⊗ b⊗ 1 ⊗ 1)X13

)

= (Ω ⊗ id⊗ id)
(
Y24z12X13

)
,

where z = (a ⊗ 1)Z∗(1 ⊗ b). Note that since Z∗ = Y
̂̂
Y

∗
, with Y ∈ M(A ⊗ Âop)

and ̂̂
Y ∈ M(Aop ⊗ Â) being elements of (two-sided) multiplier algebras, we see

easily that z ∈ A⊗ Âop. The first equality of the proposition follows.
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For the second part, recall first that Y = ÛA and X = ΣÛA
∗
Σ. Then

by Proposition 3.5 (2) of [11], we have: Âop =
{
(ω ⊗ id)(Y ) : ω ∈ B(H)∗

}‖ ‖

and A =
{
(ω ⊗ id)(X) : ω ∈ B(H)∗

}‖ ‖
. Since we have Y ∈ M(A ⊗ Âop) ⊆

M
(
K(H) ⊗ Âop

)
and X ∈ M(Âop ⊗ A) ⊆ M

(
K(H) ⊗ A

)
, we can see without

trouble that
{
(k ⊗ 1)Y (φ⊗ 1) : φ ∈ Âop, k ∈ K(H)

}‖ ‖
= K(H) ⊗ Âop, and sim-

ilarly that
{
(f ⊗ 1)X(k ⊗ 1) : f ∈ A, k ∈ K(H)

}‖ ‖
= K(H) ⊗ A. Noting that

Y24(f ⊗φ⊗ 1⊗ 1)X13 =
[
Y (φ⊗ 1)

]
24

[
(f ⊗ 1)X

]
13

, we can show easily the second
equality and thus obtain: ÂD = A⊗ Âop. �

The proposition shows that in the case of ÂD, by being just the (ordinary)
tensor product A ⊗ Âop, there is no “twisting” in the algebra structure (Recall
that in the case of AD , it is the coalgebra structure that does not involve twisting.
See Definition 1 and Proposition 3.9.).

On the other hand, we see below that the comultiplication on ÂD is equivalent
to a “τ -tensor product”, where τ is an “inversion”. Recall first the definition of
an inversion: See Definitions 8.1, 8.2 and Proposition 8.3 of [1] (See also [19].).

Definition 4. (1) Let (A, δA) and (B, δB) be two C∗-bialgebras. An inver-
sion on A and B is a ∗-isomorphism τ : A⊗B → B ⊗A such that:

(τ ⊗ idA)(idA⊗τ)(δA ⊗ idB) = (idB ⊗δA)τ

and

(idB ⊗τ)(τ ⊗ idB)(idA⊗δB) = (δB ⊗ idA)τ,

where we used the same notation τ for its extension to the multiplier
algebra M(A⊗B).

(2) Given an inversion τ on (A, δA) and (B, δB), we can define the map δτ :
A⊗B →M(A⊗B ⊗A⊗B) by

δτ := (idA⊗τ ⊗ idB)(δA ⊗ δB).

Then δτ is coassociative. It is the comultiplication associated with τ .

In our case, we can show that the operator Z provides an inversion on (A,∆cop)
and (Âop, ∆̂cop), where ∆cop and ∆̂cop are co-opposite comultiplications.

Proposition 4.2. The map τ : p 7→ ΣZpZ∗Σ, where Σ is the flip, is an “inver-
sion” on (A,∆cop) and (Âop, ∆̂cop).
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Proof. Let p ∈ A⊗ Âop. Since Y = ÛA ∈ M(A⊗ Âop), it follows that Y ∗pY ∈
A⊗ Âop. Note also that p ̂̂

Y = ̂̂
Y p, since ̂̂

Y ∈ M(Aop ⊗ Â). Therefore,

τ(p) = ΣZpZ∗Σ = ΣY ∗ ̂̂
Y p

̂̂
Y

∗
Y Σ = ΣY ∗pY Σ ∈ Âop ⊗A.

Since Z is a unitary operator, it is clear that τ : A ⊗ Âop → Âop ⊗ A is a
∗-isomorphism.

To verify that τ is an inversion, we note that ∆cop(a) = X(a ⊗ 1)X∗, for
a ∈ A, and that ∆̂cop(b) = Y (b ⊗ 1)Y ∗, for b ∈ Âop (These are consequences of
Proposition 3.5 (2) of [11].). Indeed, we have:

(idB ⊗τ)(τ ⊗ idB)(idA⊗δB)(p) = Σ23Y
∗
23Σ12Y

∗
12Y23(p12)Y ∗

23Y12Σ12Y23Σ23

= Σ23Σ12Y
∗
13Y

∗
12Y23(p12)Y ∗

23Y12Y13Σ12Σ23

= Σ23Σ12Y23Y
∗
12(p12)Y12Y

∗
23Σ12Σ23

= Σ23Y13Σ12Y
∗
12(p12)Y12Σ12Y

∗
13Σ23

= Σ23Y13

[
τ(p)

]
12
Y ∗

13Σ23 = Y12Σ23

[
τ(p)

]
12

Σ23Y
∗
12

= Y12

[
τ(p)

]
13
Y ∗

12 = (δB ⊗ idA)τ(p).

For convenience, we let B = Âop and δB = ∆̂cop. The first equality is by applying
the definitions given above, and in the third equality, we used the fact that Y is
multiplicative (i. e. Y12Y13Y23 = Y23Y12 is equivalent to Y ∗

13Y
∗
12 = Y23Y

∗
12Y

∗
23).

A similar computation will verify the other condition, thereby giving us the
proof that τ is an inversion on (A,∆cop) and (Âop, ∆̂cop). �

Remark. This is actually re-writing the proof of Theorem 8.17 in [1]. We never-
theless chose to carry out the explicit computation here (instead of just referring),
so that we can have a more tangible description of the twisted comultiplication
below (following the corollary).

Corollary 4.3. On A⊗ Âop, we have a coassociative comultiplication δτ , defined
by

δτ := (idA⊗τ ⊗ idÂop)(∆cop ⊗ ∆̂cop).

Moreover, for p ∈ A ⊗ Âop, we have: δτ (p) = V (p ⊗ 1 ⊗ 1)V ∗, where V =
Z∗

12X13Z12Y24 is as defined in Lemma 3.3.

Proof. The first part is an immediate consequence of Proposition 4.2. Direct
proof is possible for the second part (using similar method as in the above proof),
but we will instead refer the reader to the proof of Lemma 8.9 in [1]. �
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We are now ready to give a more specific description of the “twisted” comul-
tiplication on ÂD.

Proposition 4.4. For y ∈ ÂD, we have:

∆̂D(y) = (Z ⊗ Z)
[
δτ (Z∗yZ)

]
(Z∗ ⊗ Z∗).

Proof. Write y = ZpZ∗, for p ∈ A⊗ Âop. [Note that for any y ∈ ÂD = A⊗ Âop,
we have: Z∗yZ ∈ A⊗ Âop.] Then:

∆̂D(y) = VD(y ⊗ 1 ⊗ 1)VD∗ = VD(ZpZ∗ ⊗ 1 ⊗ 1)VD∗

= (Z ⊗ Z)V (Z∗ ⊗ Z∗)[ZpZ∗ ⊗ 1 ⊗ 1](Z ⊗ Z)V ∗(Z∗ ⊗ Z∗)

= (Z ⊗ Z)V (p⊗ 1 ⊗ 1)V ∗(Z∗ ⊗ Z∗)

= (Z ⊗ Z)
[
δτ (p)

]
(Z∗ ⊗ Z∗) = (Z ⊗ Z)

[
δτ (Z∗yZ)

]
(Z∗ ⊗ Z∗).

The third equality uses Lemma 3.3 (See also the proof of the Corollary 3.4, where
it is noted that VD = (Z ⊗ Z)V (Z∗ ⊗ Z∗).). The next to last equality follows
from the Corollary 4.3 above. �

Proposition 4.5. We have the following C∗-bialgebra isomorphisms:

(ÂD , ∆̂D) ∼= (A⊗ Âop, δτ ), where δτ = (id⊗τ ⊗ id)(∆cop ⊗ ∆̂cop),

∼= (Aop ⊗ Â, δτ ′), where δτ ′ = (id⊗τ ′ ⊗ id)(∆ ⊗ ∆̂).

Here τ : A⊗ Âop → Âop ⊗A is as above, and τ ′ : Aop ⊗ Â → Â⊗Aop is defined
by τ ′(q) = ΣZ∗qZΣ, which is also an inversion.

Proof. The first isomorphism follows from Proposition 4.4, given by the map
ÂD 3 y 7→ Z∗yZ ∈ A ⊗ Âop. The second isomorphism is given by the map
A ⊗ Âop 3 p 7→ (S ⊗ Ŝ)(p) ∈ Aop ⊗ Â (Recall that in our case, the antipodes S
and Ŝ are both anti-automorphisms.).

To verify the last description of δτ ′ , let q ∈ Aop ⊗ Â. Then:

δτ ′(q) = (S ⊗ Ŝ ⊗ S ⊗ Ŝ)
[
δτ

(
(S ⊗ Ŝ)(q)

)]

= (S ⊗ Ŝ ⊗ S ⊗ Ŝ)
[
(id⊗τ ⊗ id)(∆cop ⊗ ∆̂cop)

(
(S ⊗ Ŝ)(q)

)]

= (S ⊗ Ŝ ⊗ S ⊗ Ŝ)
[
(id⊗τ ⊗ id)(S ⊗ S ⊗ Ŝ ⊗ Ŝ)

(
(∆ ⊗ ∆̂)(q)

)]

=
(
id⊗(Ŝ ⊗ S)τ(S ⊗ Ŝ) ⊗ id

)(
(∆ ⊗ ∆̂)(q)

)
.
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But for any q ∈ Aop ⊗ Â, we have:

(Ŝ ⊗ S)τ(S ⊗ Ŝ)(q) = (Ŝ ⊗ S)τ
(
(Ĵ ⊗ J)q∗(Ĵ ⊗ J)

)

= (Ŝ ⊗ S)
[
ΣZ

(
(Ĵ ⊗ J)q∗(Ĵ ⊗ J)

)
Z∗Σ

]

= (J ⊗ Ĵ)
[
ΣZ

(
(Ĵ ⊗ J)q∗(Ĵ ⊗ J)

)
Z∗Σ

]∗(J ⊗ Ĵ)

= Σ(Ĵ ⊗ J)Z(Ĵ ⊗ J)q(Ĵ ⊗ J)Z∗(Ĵ ⊗ J)Σ = ΣZ∗qZΣ = τ ′(q).

The next to last equality uses Lemma 3.11. By this, we have shown the second
isomorphism. �

Remark. Note that we may also regard τ ′ as an inversion on (A,∆) and (Âop, ∆̂)
[The definition given in the above proposition is still valid.]. Then we will have:
τ ′ = χτ−1χ, where χ is the flip. In this setting, the comultiplication δτ ′ is
equivalent to the co-opposite comultiplication δcopτ , in the sense that for any
p ∈ A⊗ Âop, we have:

(4.1) (Z∗ ⊗ Z∗)
[
δτ ′(ZpZ∗)

]
(Z ⊗ Z) = δcopτ (p) = χ2↔4

1↔3

(
δτ (p)

)
.

This may be shown by direct computation (which we do not carry out here),
but it is really a consequence of our working with the Kac systems [1]. Then by
definition of ∆̂D, it follows from equation (4.1) that:

∆̂D

cop
(y) = (Z ⊗ Z)

[
δcopτ (Z∗yZ)

]
(Z∗ ⊗ Z∗) = δτ ′(y),

giving us a very tidy description of ∆̂D

cop
≡ δτ ′ .

Propositions 4.4 and 4.5 provide us a specific description of the comultiplication
on ÂD, and we see that ∆̂D is equivalent to a certain “twisted” tensor product
comultiplication. Now, let us look for the antipodal map on (ÂD , ∆̂D). As the
general theory suggests and similar to the cases of S, Ŝ, and SD (see [1], [27], [18],
[21], as well as [12], [11], and the paragraph following Proposition 3.12 above), we
wish to consider the following map:

(4.2) ŜD : (Ω ⊗ id⊗ id)(VD) 7→ (Ω ⊗ id⊗ id)(VD∗), Ω ∈ B(H⊗H)∗.

But note that by Lemma 3.3 (3),

VD
∗ = (Z12Y24Z

∗
12X13)∗ = (Z12Z34Z

∗
12X13Z12Y24Z

∗
34Z

∗
12)

∗

= Z12Z34Y
∗
24Z

∗
12X

∗
13Z

∗
34 = Z34(Z12Y

∗
24Z

∗
12X

∗
13)Z

∗
34.

Therefore, the equation (4.2) can be written as:

ŜD : (Ω ⊗ id⊗ id)(Z12Y24Z
∗
12X13) 7→ Z

[
(Ω ⊗ id⊗ id)(Z12Y

∗
24Z

∗
12X

∗
13)

]
Z∗.
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Remembering the characterizations of S : (ω ⊗ id)(X) 7→ (ω ⊗ id)(X∗) and Ŝ :
(ω′ ⊗ id)(Y ) 7→ (ω′ ⊗ id)(Y ∗), the new expression suggests that

ŜD : a⊗ b 7→ Z
(
S(a) ⊗ Ŝ(b)

)
Z∗, a ∈ A, b ∈ Âop.

Having this result as a motivation, we treat this more precisely in the following
proposition.

Proposition 4.6. Let JD be defined by JD := Z(Ĵ ⊗ J) ∈ B(H ⊗ H). By
Lemma 3.11, we have: JD = Z(Ĵ ⊗ J) = (Ĵ ⊗ J)Z∗, and it follows that JD is
involutive. We then define ŜD : ÂD → ÂD by

ŜD(y) := JDy
∗JD = Z(Ĵ ⊗ J)y∗(Ĵ ⊗ J)Z∗ = (Ĵ ⊗ J)Z∗y∗Z(Ĵ ⊗ J).

Then ŜD defines the “antipode” on ÂD.

Proof. Note first that the definition given in the proposition is same as the one
suggested in the previous paragraph:

ŜD(y) = JDy
∗JD = Z(Ĵ ⊗ J)y∗(Ĵ ⊗ J)Z∗ = Z

(
(S ⊗ Ŝ)(y)

)
Z∗.

In the last equality, we used the definitions of the maps S and Ŝ as given in
Section 2.

From its definition, it is immediate that ŜD is an anti-automorphism on ÂD ,
satisfying: ŜD

(
ŜD(y)∗

)∗ = y, for y ∈ ÂD . Next, let us also prove:

(4.3) (ŜD ⊗ ŜD)
(
∆̂D(y)

)
= ∆̂D

cop(
ŜD(y)

)
= χ2↔4

1↔3

[
∆̂D(ŜD(y))

]
.

For this, let us consider without loss of generality y = ZpZ∗ = Z(a ⊗ b)Z∗,
where, a ∈ A and b ∈ Âop. Then by the remark following Proposition 4.5, the
right hand side of equation (4.3) can be realized as being equal to δτ ′

(
ŜD(y)

)
=

δτ ′
(
(S ⊗ Ŝ)(p)

)
. Meanwhile, the left hand side can be written as follows:

(ŜD ⊗ ŜD)
(
∆̂D(y)

)

= (Ĵ ⊗ J ⊗ Ĵ ⊗ J)(Z∗ ⊗ Z∗)
[
∆̂D(y)∗

]
(Z ⊗ Z)(Ĵ ⊗ J ⊗ Ĵ ⊗ J)

= (Ĵ ⊗ J ⊗ Ĵ ⊗ J)
[
δτ (p)∗

]
(Ĵ ⊗ J ⊗ Ĵ ⊗ J) = (S ⊗ Ŝ ⊗ S ⊗ Ŝ)

[
δτ (a⊗ b)

]

= (S ⊗ Ŝ ⊗ S ⊗ Ŝ)
[
(id⊗τ ⊗ id)(∆copa⊗ ∆̂copb)

]

= (id⊗τ ′ ⊗ id)
[
(S ⊗ S ⊗ Ŝ ⊗ Ŝ)

(
∆copa⊗ ∆̂copb

)]

= (id⊗τ ′ ⊗ id)
[
∆

(
S(a)

)
⊗ ∆̂

(
Ŝ(b)

)]
= δτ ′

(
S(a) ⊗ Ŝ(b)

)
= δτ ′

(
(S ⊗ Ŝ)(p)

)
.

In this way, we verify the equation (4.3). Note that in the second equality above,
we used the characterization of ∆̂D given in Proposition 4.4. In the fifth equality,
we used the result: (Ŝ ⊗ S)

[
τ(p)

]
= τ ′

[
(S ⊗ Ŝ)(p)

]
, which earlier appeared in
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the proof of Proposition 4.5. The sixth equality is using the properties of the
antipode maps S and Ŝ. �

As in the case of (AD ,∆D) and its antipode SD, the properties of the antipodal

map ŜD noted above (including ŜD
2
≡ Id) manifests that (ÂD , ∆̂D) is again a

Kac C∗-algebra (with the existence of its Haar weight, to be given below).

5. Haar weight

To show that the quantum double (AD,∆D) and its dual (ÂD, ∆̂D) constructed
above are indeed locally compact quantum groups, we need a discussion on their
Haar weights. These Haar weights will be described in terms of the Haar weights
on (A,∆) and (Â, ∆̂), which we recall below:

Lemma 5.1. On A, define a linear functional ϕ by

ϕ(a) =
∫
a(0, 0, r) dr.

It can be extended to a faithful, lower semi-continuous, tracial weight (still denoted
by ϕ) on the C∗-algebra A. The weight ϕ satisfies the “left invariance property”:
For any a ∈ A+ such that ϕ(a) <∞, and for ω ∈ A∗

+, we have:

ϕ
(
(ω ⊗ id)(∆a)

)
= ω(1)ϕ(a).

Lemma 5.2. On Â, define a linear functional ϕ̂ by

ϕ̂(b) =
∫
b(x, y, 0) dxdy.

It can be extended to a faithful, lower semi-continuous, KMS weight (still de-
noted by ϕ̂) on the C∗-algebra Â. The weight ϕ̂ also satisfies the “left invariance
property”: For any b ∈ Â+ such that ϕ̂(b) <∞, and for ω ∈ Â∗

+, we have:

ϕ̂
(
(ω ⊗ id)(∆̂b)

)
= ω(1)ϕ̂(b).

Moreover, we have the following (unimodular) property: ϕ̂ ◦ Ŝ = ϕ̂.

Remark. In both cases above, ω(1) = ‖ω‖. These results are described in [12]
(Section 3) and in [11] (Section 2), respectively. In particular, the left invariance
properties are proved in Theorem 3.9 of [12] and in Theorem 2.11 of [11]. The
invariance properties written above are in a weak form, but the general theory
assures us that they are actually sufficient (See [18], and see also Section 1 of
[12].). Note finally that ϕ̂ is invariant under Ŝ (so (Â, ∆̂) is unimodular), while
it is not the case for ϕ and S.
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The invariance properties stay the same when we consider instead (Aop,∆)
and (Âop, ∆̂). On the other hand, see the following corollary for the cases having
co-opposite comultiplications.

Corollary 5.3. Since the antipode S : A → A satisfies (S ⊗ S)∆ = ∆cop ◦ S, it
follows from Lemma 5.1 that ϕ ◦ S is left invariant for ∆cop. That is,

(ϕ ◦ S)
(
(ω ⊗ id)(∆copa)

)
= ω(1)ϕ

(
S(a)

)
.

Similarly, from Lemma 5.2 and by using the property of the antipode Ŝ, we see
that ϕ̂ is left invariant for ∆̂cop. That is,

ϕ̂
(
(ω ⊗ id)(∆̂copb)

)
= (ϕ̂ ◦ Ŝ)

(
(ω ⊗ id)(∆̂copb)

)
= ω(1)ϕ̂

(
S(b)

)
= ω(1)ϕ̂(b).

Proof. The verification is straightforward. In the second case, we are using the
fact that ϕ̂ is invariant under Ŝ. �

Let us begin our discussion by considering the Haar weight on (ÂD, ∆̂D), whose
definition is given below. [There is actually a simpler characterization for ϕ̂D , as
can be found in Corollary 5.6 below. But our choice of the definition has been
made so that the proofs of the later propositions are a little simpler.]

Definition 5. Let ϕ̂D be the faithful, lower semi-continuous weight on ÂD , de-
fined by

ϕ̂D(y) :=
(
(ϕ ◦ S) ⊗ ϕ̂

)
(Z∗yZ).

Since ϕ ◦ S and ϕ̂ are densely defined weights on the C∗-algebras A and Âop,
and since they are both faithful and lower semi-continuous (i. e. they are “proper”
weights), we can define their tensor product (ϕ ◦ S) ⊗ ϕ̂. See Definition 1.27 of
[18]. Therefore, ϕ̂D is a proper weight on the C∗-algebra ÂD . See the following
lemma.

Lemma 5.4. For arbitrary proper weights ϕ and ψ on C∗-algebras A and B,
consider the tensor product weight ϕ⊗ψ on A⊗B. Then the set Nϕ�Nψ(⊆ Nϕ⊗ψ)
forms a core for the GNS map Λϕ⊗ψ.

Remark. For a more systematic discussion on tensor product weights, see Sec-
tion 1.6 and Appendix of [18]. The result of this lemma actually goes back to
Haagerup’s density theorem [8]: Adapted to our case, if X ∈ Nϕ⊗ψ, there exists a
sequence {Xn} in Nϕ � Nψ such that: limn→∞ Λϕ⊗ψ(Xn) = Λϕ⊗ψ(X). Because
of this density result, pretty much all the properties of a tensor product weight
ϕ⊗ψ can be obtained by just working with the elements from the algebraic tensor
product Nϕ � Nψ.
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The weight ϕ̂D is shown to be left invariant for (ÂD , ∆̂D), and is also ŜD-
invariant (i. e. unimodular). See Proposition 5.5 and Theorem 5.7 below.

Proposition 5.5. The weight ϕ̂D is ŜD-invariant: ϕ̂D = ϕ̂D ◦ ŜD.

Proof. Let y ∈ ÂD be such that y = Z(Lf ⊗ λφ)Z∗, where f ∈ A and φ ∈ Â.
Since such elements are dense in ÂD (and form a core for ϕ̂D), our proof will be
achieved if we just verify that ϕ̂D(y) = (ϕ̂D ◦ ŜD)(y).

By definition, we can see easily that:

ϕ̂D(y) =
(
(ϕ ◦ S) ⊗ ϕ̂

)
(Z∗yZ) = (ϕ ◦ S)(Lf )ϕ̂(λφ)

=
(∫

(e2λr)nf(0, 0,−r) dr
) (∫

φ(x, y, 0) dxdy
)

=
∫

(e−2λr)nf(0, 0, r)φ(x, y, 0) dxdydr.

Meanwhile, by Proposition 4.6, we know that ŜD(y) = S(Lf )Ŝ(λφ). Therefore,

ϕ̂D
(
ŜD(y)

)
=

(
(ϕ ◦ S) ⊗ ϕ̂

)(
Z∗S(Lf )Ŝ(λφ)Z

)
.

To compute this (so that we can compare the result with ϕ̂D(y) obtained above),
let us begin by finding a suitable realization of Z∗S(Lf )Ŝ(λφ)Z. Let ξ ∈ H ⊗H
and compute:

Z∗S(Lf )Ŝ(λφ)Zξ(x, y, r;x′, y′, r′)

=
∫

(e−λr)nē
[
ηλ(r)β(x − e−λrx′, e−λry′)

]
e
[
ηλ(r)β(eλr

′−λrx′, y − e−λry′)
]

S(f)(x̃, ỹ, r)Ŝ(φ)(eλr̃−λrx′, eλr̃−λry′, r′ − r̃)

ē
[
ηλ(r)β(x̃, y + eλr

′−λry′ − e−λry′ − ỹ)
]

ē
[
ηλ(r)β(eλr̃−λrx′, y + eλr

′−λry′ − e−λry′ − ỹ − eλr̃−λry′)
]

(eλr)ne
[
ηλ(r)β(x + eλr

′−λrx′ − e−λrx′ − x̃− eλr̃−λrx′, e−λry′)
]

ξ(x+ eλr
′−λrx′ − x̃− eλr̃−λrx′, y + eλr

′−λry′ − ỹ − eλr̃−λry′, r;x′, y′, r̃) dx̃dỹdr̃

=
∫
F (x̃, ỹ, r; eλr̃x′, eλr̃y′, r̃ − r′)ē

[
ηλ(r)β(x̃, y − ỹ)

]
ξ(x− x̃, y − ỹ, r;x′, y′, r̃) dx̃dỹdr̃

= (L⊗ λ)F ξ(x, y, r;x′, y′, r′),
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where F is defined by

F (x̃, ỹ, r;x′, y′, r̃) = (e2λr)nf(−eλrx̃− e−λr̃x′ + x′,−eλrỹ − e−λr̃y′ + y′,−r)

ē
[
ηλ(r)β(x̃ + e−λr̃−λrx′ − e−λrx′, e−λr̃−λry′)

]

ē
[
ηλ(−r̃)β(e−λrx′, e−λry′)

]
e
[
ηλ(r)β(e−λrx′, ỹ)

]

ē
[
ηλ(r)β(x̃, ỹ)

]
φ(−e−λr̃−λrx′,−e−λr̃−λry′, r̃).

The expression for F is obtained by remembering the definitions of S(f) and Ŝ(φ)
given in Section 2, and by using the change of variables. In this way, we obtained
the following realization:

Z∗S(Lf )Ŝ(λφ)Z = (L⊗ λ)F .

This means that:

ϕ̂D
(
ŜD(y)

)
=

(
(ϕ ◦ S) ⊗ ϕ̂

)
(F ) =

∫
(e−2λr)nF (0, 0, r;x′, y′, 0) dx′dy′dr

=
∫
f(0, 0,−r)φ(−e−λrx′,−e−λry′, 0) dx′dy′dr

=
∫
f(0, 0, r)φ(x′, y′, 0)(e−2λr)n dx′dy′dr.

Combining the results, we see that ϕ̂D
(
ŜD(y)

)
= ϕ̂D(y), proving our assertion.

�

Corollary 5.6. For any a ∈ A and b ∈ Âop, we have:
(
(ϕ ◦ S) ⊗ ϕ̂

)(
Z∗(a⊗ b)Z

)
= ϕ(a)ϕ̂

(
Ŝ(b)

)
= ϕ(a)ϕ̂(b).

In particular, for any p ∈ ÂD, we have: ϕ̂D(p) = (ϕ⊗ ϕ̂)(p). [This is the simpler
characterization of ϕ̂D mentioned earlier.]

Proof. Consider y = Z
(
S(a)⊗ Ŝ(b)

)
Z∗. Then by Proposition 4.6, we know that

ŜD(y) = S
(
S(a)

)
⊗ Ŝ

(
Ŝ(b)

)
= a⊗ b. It follows that:

ϕ̂D
(
ŜD(y)

)
=

(
(ϕ ◦ S) ⊗ ϕ̂

)
(Z∗(a⊗ b)Z

)
.

On the other hand, by definition of ϕ̂D and by using the unimodularity of ϕ̂, we
have:

ϕ̂D(y) =
(
(ϕ ◦ S) ⊗ ϕ̂

)(
S(a) ⊗ Ŝ(b)

)
= ϕ(a)ϕ̂

(
Ŝ(b)

)
= ϕ(a)ϕ̂(b).

Since we should have ϕ̂D
(
ŜD(y)

)
= ϕ̂D(y) by Proposition 5.5, the first statement

follows. The second statement is an immediate consequence. �
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Theorem 5.7. For any positive element y ∈ ÂD such that ϕ̂D(y) < ∞, and for
Ω ∈ ÂD

∗
+, we have:

ϕ̂D
(
(Ω ⊗ id⊗ id)(∆̂D(y))

)
= Ω(1)ϕ̂D(y).

Proof. For convenience, let us write B = Âop. Consider y = Z(a⊗ b)Z∗, where
a ∈ A+, (ϕ◦S)(a) <∞ and b ∈ B+, ϕ̂(b) <∞. Assume also that Ω has the form
Ω = ω1 ⊗ ω2, for some ω1 ∈ A∗

+ and ω2 ∈ B∗
+. Then:

(
(Ω ⊗ id⊗ id)(∆̂D(y))

)

= (ω1 ⊗ ω2 ⊗ id⊗ id)
(
(Z12Z34)

[
Σ23Z23(∆copa⊗ ∆̂copb)Z∗

23Σ23

]
(Z12Z34)∗

)

= (ω̃1 ⊗ ω̃2 ⊗ id⊗ id)
(
Z34Σ23Z23(∆copa⊗ ∆̂copb)Z∗

23Σ23Z
∗
34

)
,

where ω̃1, ω̃2 are defined such that (ω̃1 ⊗ ω̃2)(·) := (ω1 ⊗ ω2)(Z · Z∗).
But by Lemma 3.1, and by using ∆̂copb = Y (b⊗ 1)Y ∗, we have:

Z34Σ23Z23(∆copa⊗ ∆̂copb)Z∗
23Σ23Z

∗
34

= Y ∗
34Σ23Y

∗
23

[
(id⊗ id⊗∆̂cop)(∆copa⊗ b)

]
Y23Σ23Y34

= Σ23Y
∗
24Y

∗
23Y34(∆copa⊗ b⊗ 1)Y ∗

34Y23Y24Σ23

= Σ23Y34Y
∗
23(∆

copa⊗ b⊗ 1)Y23Y
∗
34Σ23

= Σ23

[
(id⊗ id⊗∆̂cop)(Y ∗

23(∆
copa⊗ b)Y23)

]
Σ23.

We are using the multiplicativity of Y (i. e. Y23Y24Y34 = Y34Y23) in the third
equality. Therefore, by using the definition of ϕ̂D given in Definition 5 and in
Corollary 5.6, we have:

ϕ̂D
(
(Ω ⊗ id⊗ id)(∆̂D(y))

)
= (ϕ⊗ ϕ̂)

(
(Ω ⊗ id⊗ id)(∆̂D(y))

)

= (ϕ⊗ ϕ̂)
(
(ω̃1 ⊗ id⊗ω̃2 ⊗ id)

[
(id⊗ id⊗∆̂cop)(Y ∗

23(∆
copa⊗ b)Y23)

])
.

Further computation shows the following:

ϕ̂D
(
(Ω ⊗ id⊗ id)(∆̂D(y))

)
= ω̃2(1)(ϕ⊗ ϕ̂)

(
(ω̃1 ⊗ id)

[
Y ∗

23(∆
copa⊗ b)Y23

])

= ω̃2(1)
(
(ϕ ◦ S) ⊗ ϕ̂

)(
(ω̃1 ⊗ id)[∆copa⊗ b]

)

= ω̃2(1)ω̃1(1)(ϕ ◦ S)(a)ϕ̂(b)

= ω2(1)ω1(1)ϕ̂D(y) = Ω(1)ϕ̂D(y).

Notice that the first and third equalities above use the left invariance properties
of ϕ̂ and (ϕ ◦ S) (See Corollary 5.3.). However, some care has to be given (using
Lemma 5.4), if we want them to be perfectly valid. We will not go into the details
here (to avoid our discussion from becoming too technical and lengthy), but for
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instance, we may follow the discussion similar to the proof of Lemma 3.5 and
Corollary 3.6 of [28]. Meanwhile, the second equality is due to Lemma 3.1 and
Corollary 5.6. Fourth and fifth equalities follow from the observation that

ω̃1(1)ω̃2(1) = (ω̃1 ⊗ ω̃2)(1 ⊗ 1) = (ω1 ⊗ ω2)
(
Z(1 ⊗ 1)Z∗)

= (ω1 ⊗ ω2)(1 ⊗ 1) = Ω(1).

So far we proved the case when y = Z(a⊗b)Z∗ and Ω = ω1⊗ω2. Extending the
proof for general y ∈ ÂD+ and Ω ∈ ÂD

∗
+ is not necessarily trivial. Nevertheless,

we will again invoke Lemma 5.4 here and refer the reader instead to the papers
mentioned above (See [28], [18].). �

Theorem 5.7 establishes the proof that ϕ̂D is a legitimate (invariant) Haar
weight. By general theory [18], it is therefore the unique (up to multiplication
by a scalar) Haar weight for (ÂD , ∆̂D). In our case, we note that even if (A,∆)
was non-unimodular, ϕ̂D is actually unimodular for (ÂD , ∆̂D) (Proposition 5.5).
Since this is the case, we do not need any further discussion on the “modular
function”. Summarizing the results so far, we now state the following theorem:

Theorem 5.8. The C∗-bialgebra (ÂD , ∆̂D), together with its additional structure
maps including the antipode ŜD and the (unimodular) Haar weight ϕ̂D, is a C∗-
algebraic locally compact quantum group, in the sense of Kustermans and Vaes
(or of Masuda, Nakagami, and Woronowicz).

As we have made our case throughout Section 4 and Section 5, we regard
(ÂD , ∆̂D) as the dual of the quantum double. Namely, D̂(A).

Let us now look at the case of D(A) = (AD ,∆D). Since it is the dual object
of (ÂD , ∆̂D) associated with the multiplicative unitary operator VD , and since
(ÂD , ∆̂D) is a legitimate locally compact quantum group (Theorem 5.7), we con-
clude immediately from general theory [18], [27], [21] that it is also a C∗-algebraic
locally compact quantum group. This achieves our stated goal.

For the remainder of this section, we will just give an explicit description of
the Haar weight ϕD of (AD,∆D), whose existence (and uniqueness up to mul-
tiplication by a scalar) is assured from the above observation. The subalgebra
Â � A ⊆ AD forms a core for the Haar weight.

Proposition 5.9. For Π(b ⊗ a) = π′(λb)π(La) ∈ AD, where b ∈ Â and a ∈ A,
define:

ϕD
(
Π(b⊗ a)

)
:= ϕ̂(λb)ϕ(La) =

∫
(b⊗ a)(x, y, 0; 0, 0, r′) dxdydr′.
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This defines a linear functional on Â � A. Then we have:

ϕD
(
Π(φ⊗ f)∗Π(b⊗ a)

)
= ϕ̂(λφ∗λb)ϕ(Lf ∗La),

for b, φ ∈ Â and for a, f ∈ A. Furthermore, we have:

(Ω ⊗ ϕD)
(
∆D(Π(b⊗ a))

)
= Ω(1)ϕD

(
Π(b⊗ a)

)
, Ω ∈ B(H⊗H)∗.

This will characterize the Haar weight on (AD ,∆D). In other words, the func-
tional ϕD extends to a (unique) C∗-algebra weight on AD, which is left invariant.

Proof. Note that Π(φ⊗f)∗Π(b⊗a) = Π
(
(φ⊗f)∗×(b⊗a)), where the involution

and multiplication on Â �A are as given in equations (3.3) and (3.1). By a long
but straightforward computation using the equations (3.3) and (3.1), we have:

∫ (
(φ ⊗ f)∗ × (b⊗ a)

)
(x, y, 0; 0, 0, r′) dxdydr′

=
∫
φ(x, y, r̃)b(x, y, r̃)f(x̃, ỹ, r′)a(x̃, ỹ, r′) dx̃dỹdr̃dxdydr′

= ϕ̂(b×Â φ
∗)ϕ(f∗ ×A a) = ϕ̂(λφ∗λb)ϕ(Lf ∗La).

It thus follows that: ϕD
(
Π(φ⊗ f)∗Π(b⊗ a)

)
= ϕ̂(λφ∗λb)ϕ(Lf ∗La).

Using this, we can give Â � A a left Hilbert algebra structure. Moreover, we
can show without difficulty that the GNS Hilbert space for ϕD is H ⊗H, while
the GNS representation is Π. Following a standard procedure (see [5], and also
[12], [11]), we can define a C∗-algebra weight on AD extending the functional ϕD
(The extended weight will be still denoted by ϕD .).

Meanwhile, at least at the level of the (dense) subalgebra Â�A, the verification
of the left invariance of ϕD is not very difficult. Note that by Proposition 3.9, we
can write:

(Ω ⊗ id⊗ id)
(
∆D(Π(b⊗ a))

)
=

∑
(Ω ⊗ id⊗ id)

(
(Π ⊗ Π)(b(1) ⊗ a(1) ⊗ b(2) ⊗ a(2))

)

=
∑[

Ω
(
π′(b(1))π(a(1))

)(
π′(b(2))π(a(2))

)]
,

where we are using Sweedler’s notation for ∆̂b and ∆a. And, for convenience, we
regard b = λb and a = La. Then:

(Ω ⊗ ϕD)
(
∆D(Π(b⊗ a))

)
=

∑[
Ω

(
π′(b(1))π(a(1))

)
ϕD

(
π′(b(2))π(a(2))

)]

=
∑[

Ω
(
(b(1) ⊗ 1)Z(1 ⊗ a(1))Z∗)ϕ̂(b(2))ϕ(a(2))

]
.

Without loss of generality, assume that Ω = Ωξ,η, for ξ, η ∈ H ⊗ H (following
the standard notation, as appeared in the proof of Proposition 4.1). Then the
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expression becomes:

(Ω ⊗ ϕD)
(
∆D(Π(b⊗ a))

)
=

∑[〈
(b(1) ⊗ 1)Z(1 ⊗ a(1))Z∗ξ, η

〉
ϕ̂(b(2))ϕ(a(2))

]

=
∫ ∑[

(b(1) ⊗ 1)Z(1 ⊗ a(1))Z∗ξ(x, y, r;x′, y′, r′)η(x, y, r;x′, y′, r′)

b(2)(x̃, ỹ, 0)a(2)(0, 0, r̃)
]
dxdydrdx′dy′dr′dx̃dỹdr̃.

We can compute this using the formulas we obtained in Section 2 for b(1) = λ(b(1))
and a(1) = L(a(1)), as well as the operator Z (obtained in Section 3). Next, note
that ∆̂b =

∑
[b(1) ⊗ b(2)] and that ∆a =

∑
[a(1) ⊗ a(2)], where we can use the

equation (2.5) for ∆̂b and the equation (2.2) for ∆a. Then, by using change of
variables, the expression becomes:

(Ω ⊗ ϕD)
(
∆D(Π(b⊗ a))

)

=
∫
b(eλrx+ x̃, eλry + ỹ, 0)a(0, 0, r′ + r̃)

ξ(x, y, r;x′, y′, r′)η(x, y, r;x′, y′, r′) dxdydrdx′dy′dr′dx̃dỹdr̃

=
∫
b(x̃, ỹ, 0)a(0, 0, r̃)ξ(x, y, r;x′, y′, r′)η(x, y, r;x′, y′, r′) dxdydrdx′dy′dr′dx̃dỹdr̃

= ϕ̂(b)ϕ(a)Ωξ,η(1) = Ω(1)ϕD
(
Π(b⊗ a)

)
.

Since we already know the existence of the unique Haar weight from the discus-
sion preceding the proposition, this invariance property at the dense subalgebra
level is enough to assure us that ϕD is indeed the legitimate Haar weight for
(AD ,∆D). �

Summarizing the results from Section 3 and the discussion on the Haar weight
given here, we conclude the following:

Theorem 5.10. The C∗-bialgebra (AD ,∆D), together with the Haar weight ϕD,
is a C∗-algebraic locally compact quantum group. It is the (C∗-algebraic) “quan-
tum double”: D(A) = Âop on A.

Remark. Unlike in the case of (ÂD , ∆̂D) and its Haar weight ϕ̂D , we can show
easily that ϕD is non-unimodular: That is, ϕD ◦ SD 6= ϕD. The same modular
function operator for (A,∆) (see Section 5 of [12]) will work as the modular
function for (AD ,∆D).
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6. Quantum Universal R-matrix

Just as in the case of the purely algebraic framework, our quantum dou-
ble (AD ,∆D) is also equipped with a (quasi-triangular) “quantum universal R-
matrix” type operator. The definition of a quantum R-matrix in the C∗-algebra
framework is essentially same as in the more usual, Hopf algebra or QUE algebra
setting (See [7], [4], [20], for the usual definition; And see Section 6 of [9], for the
definition in the C∗-algebra setting.).

In this section, we will give a brief construction of a certain unitary operator
R ∈ M(AD⊗AD), which will be considered as the “quantum universal R-matrix”
for the quantum group (AD,∆D). Let us begin with a lemma, which actually
follows from Lemma 3.3. The proof is adapted from Section 8 of [1].

Lemma 6.1. Let the notations be as before, and let X, Y , and Z be the operators
defined earlier. Then we have:

(1) Z∗
12X14Z12Y25Y45 = Y45Y25Z

∗
12X14Z12

(2) Z34X14Z
∗
34X15X35 = X35X15Z34X14Z

∗
34

Proof. Recall from Lemma 3.3 (3) that: Z34Z
∗
12X13Z12Y24 = Y24Z

∗
12X13Z12Z34.

It follows that: Z∗
12X13Z12Y24Z

∗
34 = Z∗

34Y24Z
∗
12X13Z12. Remembering that X ∈

M(Âop ⊗ A), Y ∈ M(A ⊗ Âop), and that Z = ̂̂
Y Y ∗, where ̂̂

Y ∈ M(Aop ⊗ Â),

this becomes: Z∗
12X13Z12Y24Y34 = Y34Y24Z

∗
12X13Z12. (The point is that ̂̂

Y
∗

34

commutes with all the operators in the equation.) Certainly, this is equivalent to:
Z∗

12X14Z12Y25Y45 = Y45Y25Z
∗
12X14Z12, obtaining (1).

For (2), recall first that X = ΣY ∗Σ. Then (1) above can be re-written as:
Z∗

12X14Z12X
∗
52X

∗
54 = X∗

54X
∗
52Z

∗
12X14Z12. It follows that: X52X54Z

∗
12X14Z12 =

Z∗
12X14Z12X54X52. So we have: Z12X52X54Z

∗
12X14 = X14Z12X54X52Z

∗
12, which

is same as: Z12X52Z
∗
12X54X14 = X14X54Z12X52Z

∗
12. But this is actually equiva-

lent to (2) [Legs 1,2,4,5 are now considered as legs 3,4,5,1.]: Z34X14Z
∗
34X15X35 =

X35X15Z34X14Z
∗
34. �

We are now ready to give the description of our “quantum R-matrix” operator
R. Again, the definition is a slight modification of the one considered in Section 8
of [1].

Proposition 6.2. Let R = Z34X14Z
∗
34. The following properties hold.

(1) R ∈ M(AD ⊗AD).
(2) We have: (∆D ⊗ id)(R) = R13R23 and (id⊗∆D)(R) = R13R12.
(3) For any x ∈ AD, we have: R(∆D(x))R∗ = ∆cop

D (x).
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(4) The operator R satisfies the “quantum Yang–Baxter equation”:
R12R13R23 = R23R13R12.

In (2) and (4) above, we are viewing R as an operator in B
(
(H⊗H)⊗ (H⊗H)

)
.

Proof. (1) Recall that X ∈ M(Âop ⊗ A). So by naturally extending the C∗-
algebra homomorphisms π′ and π defined in Proposition 3.5 and Corollary 3.6,
we can see that: R = Z34X14Z

∗
34 = (π′ ⊗ π)(X) ∈M(AD ⊗AD).

(2) By using the characterization of R given above, we have:

(∆D ⊗ id)(R) = (∆D ⊗ id)
(
(π′ ⊗ π)(X)

)
= (π′ ⊗ π′ ⊗ π)

(
∆̂ ⊗ id)(X)

)

= (π′ ⊗ π′ ⊗ π)(X∗
12X23X12) = (π′ ⊗ π′ ⊗ π)(X13X23)

=
[
(π′ ⊗ π′ ⊗ π)(X13)

][
(π′ ⊗ π′ ⊗ π)(X23)

]
= R13R23.

The second equality is due to ∆D ◦ π′ = (π′ ⊗ π′) ◦ ∆̂, which was observed in
Corollary 3.10. Third equality is using the fact that ∆̂b = X∗(1⊗b)X , for b ∈ Âop,
while the next equality is the multiplicativity of X . The next to the last equality
is using that π′ and π are ∗-homomorphisms. Meanwhile, by remembering that
∆a = Y ∗(1 ⊗ a)Y , for a ∈ A, and that Y = ΣX∗Σ, a similar computation will
give us the other equation: (id⊗∆D)(R) = R13R12.

(3) Recall that b = (id⊗ω)(X) ∈ Âop, and a = (id⊗ω′)(Y ) ∈ A, for ω, ω′ ∈
B(H)∗, and that these operators generate Âop and A, respectively. [This result
follows from Proposition 3.5 (2) of [11] and Section 6 of [12]. It was also noted in
the proof of Proposition 3.5 in the previous section.]

So consider b = (id⊗ω)(X) and compute. Then:

R
[
∆D

(
π′(b)

)]
= R

[
(π′ ⊗ π′)(∆̂b)

]
= (Z34X14Z

∗
34)

[
X∗

13(1 ⊗ 1 ⊗ b⊗ 1)X13

]

= (id⊗ id⊗ id⊗ id⊗ω)(Z34X14Z
∗
34X

∗
13X35X13)

= (id⊗ id⊗ id⊗ id⊗ω)(Z34X14Z
∗
34X15X35)

= (id⊗ id⊗ id⊗ id⊗ω)(X35X15Z34X14Z
∗
34)

= (id⊗ id⊗ id⊗ id⊗ω)(X∗
31X15X31Z34X14Z

∗
34)

= Y13(b⊗ 1 ⊗ 1 ⊗ 1)Y ∗
13Z34X14Z

∗
34

=
[
(π′ ⊗ π′)(∆̂copb)

]
R =

[
∆D

cop
(
π′(b)

)]
R.

The first equality is again using ∆D ◦ π′ = (π′ ⊗ π′) ◦ ∆̂. The fourth and sixth
equalities follow from the multiplicativity of X , while the fifth equality is by
Lemma 6.1 (2). The seventh equality is just using Y = ΣX∗Σ.
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Next, consider a = (id⊗ω′)(Y ) and compute. Then:

R
[
∆D

(
π(a)

)]
= R

[
(π ⊗ π)(∆a)

]

= (Z34X14Z
∗
34)

[
Z34Z12Y

∗
24(1 ⊗ 1 ⊗ 1 ⊗ a)Y24Z

∗
12Z

∗
34

]

= (id⊗ id⊗ id⊗ id⊗ω)(Z34X14Z12Y
∗
24Y45Y24Z

∗
12Z

∗
34)

= (id⊗ id⊗ id⊗ id⊗ω)(Z34X14Z12Y25Y45Z
∗
12Z

∗
34)

= (id⊗ id⊗ id⊗ id⊗ω)(Z34Z12Y45Y25Z
∗
12X14Z12Z

∗
12Z

∗
34)

= (id⊗ id⊗ id⊗ id⊗ω)(Z34Z12Y
∗
42Y25Y42Z

∗
12X14Z

∗
34)

= Z34Z12X24(1 ⊗ a⊗ 1 ⊗ 1)X∗
24Z

∗
12Z

∗
34Z34X14Z

∗
34

=
[
(π ⊗ π)(∆copa)

]
R =

[
∆D

cop
(
π(a)

)]
R.

This is done in exactly same way as in the previous case. In particular, the first
equality is using ∆D ◦ π = (π ⊗ π) ◦ ∆ (See Corollary of Proposition 3.9), while
the fifth equality uses Lemma 6.1 (1).

Since AD is known to be generated by the operators π′(b)π(a), we conclude
from these two results that we have: R

[
∆D(x)

]
R∗ = ∆D

cop(x), for any x ∈ AD .
[Note that by definition, R is unitary.]

(4) The last statement is an immediate consequence of results (2) and (3):

R12R13R23 = R12

[
(∆D ⊗ id)(R)

]
=

[
(∆D

cop ⊗ id)(R)
]
R12 = R23R13R12.

First equality follows from (2); the second equality is from (3); and the third
equality is from (2) with the legs 1 and 2 interchanged. �

Existence of a quantum R-matrix for a Hopf algebra (or a quantum group) is
quite useful in the development of the representation theory (See, for instance,
[10].). However, we will postpone to a future occasion any further discussion
about the operator R and its applications. Some of these future discussions will
be about the relationship between (AD ,∆D) and its “classical limit”, the double
Poisson–Lie group considered in [10], [13].
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