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a b s t r a c t

Beginning with a skew-symmetric matrix, we define a certain Poisson–Lie group. Its
Poisson bracket can be viewed as a cocycle perturbation of the linear (or ‘‘Lie–Poisson’’)
Poisson bracket. By analyzing this Poisson structure, we gather enough information to
construct a C∗-algebraic locally compact quantum group, via the ‘‘cocycle bicrossed
product construction’’ method. The quantum group thus obtained is shown to be a
deformation quantization of the Poisson–Lie group, in the sense of Rieffel.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is generally understood that quantum groups are obtained by ‘‘quantizing’’ ordinary groups. On the other hand, it
is not always clear what we mean by this statement. Typically, in the often used ‘‘generators and relations method’’ of
constructing quantum groups, there exists a certain deformation parameter q such that, when q = 1, the quantum group
degenerates to the universal enveloping algebra of an ordinary group or the function algebra of an ordinary group. See [1,2],
and other examples.While this is nice, themethod of generators and relations is at best an indirectmethod,meaning that the
correspondence information about how the pointwise product on the function algebra is deformed to an operator product
is usually not apparent.

There are also some technical issues when working with the q-relations among the generators. It is less of a problem in
the case of a purely algebraic setting of quantized universal enveloping (QUE) algebras or that of compact quantum groups.
However, when one wishes to construct a non-compact quantum group, the generators (coordinate functions of the group)
tend to be unbounded, so things aremore complicated. There areways to handle the difficulties (see [3], whereWoronowicz
works with the notion of unbounded operators ‘‘affiliated’’ with C∗-algebras), but, in general, it is usually better to look for
some other methods of construction.

One useful approach not relying on the generators is the method of deformation quantization. Here, the aim is to deform
the (commutative) algebra of functions on a Poisson manifold, in the direction of the Poisson bracket. See [4,5]. In the
C∗-algebra framework, the corresponding notion is the ‘‘strict deformation quantization’’ by Rieffel [6], or its more
generalized versions developed later by other authors. To obtain a quantum group, one would begin with a suitable
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Poisson–Lie group G (a Lie group equipped with a compatible Poisson bracket) and perform the deformation quantization
on the function space C0(G)—for both its algebra and coalgebra structures.

Some of the non-compact quantum groups obtained by deformation quantization are [7–11]. In these examples, there
exists a very close relationship between a quantum group and its Poisson–Lie group counterpart. Indeed, the information at
the level of Poisson–Lie groups or Lie bialgebras plays a key role in the construction of the quantum groups.

The interplay between the Poisson data and the quantum group can go further. For instance, as for the example
constructed by the author [11], the information at the classical (Poisson) level was useful not only in the construction of
the quantum group but also in studying its representation theory, in relation to the dressing orbits. See [12].

Despite many advantages, however, jumping from a Poisson–Lie group to the C∗-algebraic quantum group level is not
always easy. Deformation quantization only provides the ‘‘spatial’’ quantization. Even with the guides suggested by the
Poisson data, the actual construction of the structure maps like comultiplication, antipode, or Haar weight requires various
specialized techniques. Often, a method that works for some examples may not work for others.

Considering the drawbacks to the geometric approach above, we proposed in [13] to enhance the ‘‘geometric’’ (deforma-
tion quantization) approach by combining it with a more ‘‘algebraic’’ framework of cocycle bicrossed products [14,15].

The bicrossed product method is relatively simple, but sufficiently general to include many interesting examples.
Historically, it goes back to the group extension problems in the Kac algebra setting. For a comprehensive treatment on
constructing quantum groups using this framework, see [15]. However, as is the case for any general method, having the
framework is not enough to construct actual and specific examples. For this method to work, one needs to have a specific
‘‘matched pair’’ of groups (or quantum groups), together with a compatible cocycle.

Our proposal, as given in [13], is to begin first with a Poisson–Lie group and analyze its Poisson structure. The Poisson data
will help us obtain a suitable matched pair and a compatible cocycle. If, in particular, the Poisson bracket is of the ‘‘cocycle
perturbation of the linear Poisson bracket’’ type, in the sense of [16], then the deformation process can bemademore precise.
Finally, using the matched pair and the cocycle data, we will perform the cocycle bicrossed product construction.

Quantum groups obtained in this way tend to have (twisted) crossed products as their underlying C∗-algebras. Therefore,
this program is usually best for constructing solvable-type quantum groups. This is because crossed products often model
quantized spaces. (For instance, the ‘‘Weyl algebra’’, C0 (Rn)oτ Rn with τ being the translation, is the quantized phase
space [17].) But, with some adjustments, the method could be adopted to construct other types of quantum groups.

Previously, [13] gave examples of some Poisson–Lie groups and implicitly indicated how onemay be able to carry out the
program, but it did not contain any detailed construction. Case (1) in [13] is related with the examples from [7,8,18], while
Case (2) was studied in [11]. However, these earlier papers did not exactly take the approach that we are proposing here.

The reason behind writing this paper is that, in addition to giving an example of a quantum group, we wanted to expand
on our work in [13] by providing a careful description of our construction method, taking Case (3) in that paper as a model.
The authorwas initially contentwith the brief description as given in that paper, but while visiting Leuven during November
2008, it was suggested by Professor Alfons Van Daele that it would be beneficial to give a fuller description of the example
and the method. This is done here. We expect that our program can be used to construct other new examples in a similar
way.Moreover, sincewewould have a close, built-in connection between the Poisson–Lie group and the quantum group, we
will be able to take advantage of the geometric data in further studying the quantum group and applications (for instance,
dressing orbits on Poisson–Lie groups are closely related with the quantum group representations).

The paper is organized as follows. In Section 2, using a given skew-symmetric matrix J , we define the Poisson–Lie
group G that we wish to quantize. Its Poisson bracket is non-linear, but can be regarded as a ‘‘cocycle perturbation’’ of
the linear (Lie–Poisson type) Poisson bracket. The deformation quantization of the Poisson–Lie group


G, { , }


is carried

out in Section 3. The Poisson data helps us to define a certain multiplicative unitary operator (in the sense of Baaj and
Skandalis [19]), and it enables us to define the C∗-bialgebra (S, ∆). It is shown here that (S, ∆) is a strict deformation
quantization (in the sense of Rieffel [6,20]) of the Poisson–Lie group G. In Section 4, we realize that the construction we
carry out in Section 3 is in fact a case of the cocycle bicrossed product construction, in the sense of [15]. The result is that the
C∗-bialgebra is indeed a locally compact quantum group. To tie the loose ends, brief descriptions are given on the antipode
map and the Haar weight on our quantum group (S, ∆).

2. The Poisson–Lie group G

2.1. The group

Let n be an integer such that n ≥ 2, and let J = (Jik)1≤i,k≤n be an n × n skew-symmetric matrix. So Jki = −Jik, for
1 ≤ i, k ≤ n. Then consider the (2n + 1)-dimensional Lie algebra g, spanned by the basis elements pi, qi (i = 1, . . . , n), r,
satisfying the following relations:

[pi, pj] = 0, [qi, qj] = 0, [pi, qj] = 0, [pi, r] =

n
k=1

Jikqk, [qi, r] = 0,

for i, j = 1, . . . , n. Since J = (Jik) is skew, it is clear that [, ] is a valid Lie bracket. Observe also that the qj are central and
that g is a two-step nilpotent Lie algebra.
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It is not difficult to describe the corresponding Lie group. The group G has R2n+1 as its underlying space, and the
multiplication on it is defined by

(p, q, r)(p′, q′, r ′) =


p + p′, q + q′

+ r ′

n
i,k=1

Jikpiqk, r + r ′


. (2.1)

Here, p, q, p′, q′
∈ Rn and r, r ′

∈ R. For convenience, we are regarding p ∈ Rn as p = p1p1 +p2p2 +· · ·+pnpn, and similarly
for the other variables. In other words, the multiplication law in (2.1) could be also written as

(p, q, r)(p′, q′, r ′) =


p1 + p′

1, . . . , pn + p′

n; q1 + q′

1 + r ′

n
i=1

Ji1pi, . . . , qn + q′

n + r ′

n
i=1

Jinpi; r + r ′


.

The identity element is e = (0, 0, 0), while the inverse element for (p, q, r) ∈ G is

(p, q, r)−1
=


−p, −q + r

n
i,k=1

Jikpiqk, −r


.

The group G is a (connected and simply connected) exponential solvable Lie group corresponding to g. We can identify
G ∼= g as vector spaces. Note that an ordinary Lebesgue measure becomes a Haar measure for G.

In the following section, we will further show that G is equipped with a compatible Poisson bracket, making it a
Poisson–Lie group. Our aim in this paper is to construct a locally compact quantum group that can be considered as a
‘‘quantized C0(G)’’.

2.2. Non-linear Poisson structure on G

By general theory on Poisson–Lie groups (see [21]), any compatible Poisson structure on G canonically determines a dual
Poisson–Lie group, and vice versa. In fact, in our case, it is in some sensemore convenient to consider first its dual counterpart
H = G∗, which is shown to be a Poisson–Lie group. We can then regard G as the dual Poisson–Lie group of H . The following
discussion was first reported in [13]; see Section 1, Case (3) of [13].

Definition 2.1 (Heisenberg Lie Group). Let H be the (2n+ 1)-dimensional Heisenberg Lie group. Its underlying space is R2n+1

and the multiplication on it is given by

(x, y, z)(x′, y′, z ′) =

x + x′, y + y′, z + z ′

+ β(x, y′)

,

for x, x′, y, y′
∈ Rn and z, z ′

∈ R. Here, β( , ) denotes the ordinary inner product. So β(x, y) = x · y, for x, y ∈ Rn.
Its Lie algebra counterpart is the Heisenberg Lie algebra h. It is generated by the basis elements xi, yi (i = 1, . . . , n), z,

with the following relations:

[xi, yj] = δijz, [xi, xj] = [yi, yj] = 0, [z, xi] = [z, yi] = 0.

Remark. For convenience, we will identify H ∼= h as vector spaces. This is possible since H is an exponential solvable Lie
group (it is actually nilpotent). And we choose a Lebesgue measure on H ∼= h, which is in fact a Haar measure for H . As in
Section 2.1, we will understand that x = x1x1 + · · · + xnxn, and similarly for the other variables.

To describe the Poisson structure on H , it is equivalent to specify a ‘‘Lie bialgebra’’ structure (h, δ). See [22,21] for the
general theory on Poisson–Lie groups and Lie bialgebras. In our case, the cobracket δ : h → h ∧ h is obtained from a certain
classical r-matrix. Details are given in the following proposition. See also Section 5 of [13].

Proposition 2.2. Let r ∈ h ⊗ h be defined by r =
n

i,k=1 Jikxk ⊗ xi. It is a skew solution of the ‘‘classical Yang–Baxter equation’’
(CYBE):

[r12, r13] + [r12, r23] + [r13, r23] = 0.

Therefore, it determines a ‘‘triangular’’ Lie bialgebra structure, δ : h → h ∧ h, by δ(X) = adX (r), X ∈ h. To be specific, we have

δ(xk) = 0, δ(yk) =

n
i=1

Jik(xi ⊗ z − z ⊗ xi) =

n
i=1

Jikxi ∧ z, δ(z) = 0,

for k = 1, . . . , n.

Proof. Since span(xi : i = 1, 2, . . . , n) is an abelian subalgebra of h, the element r trivially satisfies the CYBE. It is also skew
(i.e., r12 + r21 = 0), because J is a skew-symmetric matrix. This means that r is a triangular classical r-matrix.

By general theory (see, for instance, [23,21]),we thus obtain a coboundary Lie bialgebra structure, givenby δ(X) = adX (r),
X ∈ h, where adX (a ⊗ b) = [X, a] ⊗ b + a ⊗ [X, b]. We can verify the results of the proposition by straightforward
computation. �
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Corresponding to the cobracket δ : h → h ∧ h given above, we can define a Lie bracket on the dual space h∗ of h by
[ , ] = δ∗

: h∗
∧ h∗

→ h∗. That is, [µ, ν] is defined by
[µ, ν], X


=

δ∗(µ ⊗ ν), X


=

µ ⊗ ν, δ(X)


, (2.2)

where X ∈ h, µ, ν ∈ h∗, and ⟨ , ⟩ is the dual pairing between h∗ and h. It turns out that the ‘‘dual’’ Lie algebra structure on h∗

coincides with the Lie algebra g described in the previous section. See the proposition below (the proof is straightforward).

Proposition 2.3. Let g = h∗ be spanned by pi, qi (i = 1, . . . , n), r, which form the dual basis of xi, yi (i = 1, . . . , n), z. On g,
the Lie algebra relations can be defined by Eq. (2.2). Then we have

[pi, pj] = 0, [qi, qj] = 0, [pi, qj] = 0, [pi, r] =

n
k=1

Jikqk, [qi, r] = 0,

for i, j = 1, . . . , n. This is the Poisson dual of the Lie bialgebra (h, δ).

Comparing the result of Proposition 2.3 with the definition of the Lie algebra structure on g given in Section 2.1, we can
see clearly that they are indeed the same. This reinterpretation of our Lie algebra g means that g is actually a Lie bialgebra,
being a dual Lie bialgebra of (h, δ). The cobracket on g is the dual map of the Lie bracket on h. A short calculation shows that
the cobracket θ : g → g ∧ g takes its values on the basis vectors of g as follows:

θ(pi) = 0, θ(qi) = 0, θ(r) =

n
i=1

(pi ⊗ qi − qi ⊗ pi) =

n
i=1

(pi ∧ qi).

We thus have the (Poisson dual) Lie bialgebra (g, θ). Let us now consider the corresponding Poisson–Lie group G and its
Poisson bracket. See Proposition 2.4 below. As before, we are regarding p = p1p1 + p2p2 + · · · + pnpn, and similarly for the
other variables.

Proposition 2.4. Let G be the (2n + 1)-dimensional Lie group, together with the multiplication law

(p, q, r)(p′, q′, r ′) =


p + p′, q + q′

+ r ′

n
i,k=1

Jikpiqk, r + r ′


.

This gives us the Lie group corresponding to g from Proposition 2.3. The Poisson bracket on G is given by

{f , g}(p, q, r) = r

β(x, y′) − β(x′, y)


+

r2

2

n
i,k=1

Jik(yky′

i − yiy′

k),

for f , g ∈ C∞(G). Here, df (p, q, r) = (x, y, z) and dg(p, q, r) = (x′, y′, z ′), which are naturally viewed as elements of h.

Proof. Construction of G from g was already described in Eq. (2.1). To find the expression for the Poisson bracket, we follow
the standard procedure [21]. See also Proposition 2.3 of [13]. A similar computation (for a different Poisson structure) can
be found in the proof of Theorem 2.2 of [11].

First, consider Ad : G → Aut(g), the adjoint representation of G on g. Then we look for a map F : G → g ∧ g, that
is, a group 1-cocycle on G for the Ad-representation, whose derivative at the identity element, dFe, coincides with θ above.
Or, dF(0,0,0) = θ . In general, integrating θ to F is not always easy. However, in our case, it is not difficult to check that the
following map F indeed satisfies the requirements above:

F(p, q, r) = r
n

i=1

(pi ∧ qi) −
r2

2

n
i,k=1

(Jikqk ∧ qi).

Since we have the 1-cocycle F , the Poisson bivector field is then obtained by the right translation of F . To compute
it, suppose that f , g ∈ C∞(G). For (p, q, r) ∈ G, since df = dfe is the (linear) differential of the scalar-valued map
f on G, and since g is the tangent space of G at its identity e = (0, 0, 0), we can naturally identify df (p, q, r) as an
element in g∗

= h. Similarly for dg(p, q, r). So, write df (p, q, r) = (x, y, z) and dg(p, q, r) = (x′, y′, z ′). Noting that
R(p,q,r)∗(pi) = pi + r

n
k=1 Jikqk and R(p,q,r)∗(qi) = qi under the right translation, we have

{f , g}(p, q, r) =

R(p,q,r)∗F(p, q, r), df (p, q, r) ∧ dg(p, q, r)


= r


β(x, y′) − β(x′, y)


+

r2

2

n
i,k=1

Jik(yky′

i − yiy′

k). �

Wecan see fromProposition 2.4 thatwe thus have a non-linear Poisson bracket on our groupG.When J = O (zeromatrix),
it becomes linear, carrying only the part that comes from the Lie algebra structure on h = g∗. Ours is actually a ‘‘cocycle
perturbation’’ of the linear Poisson bracket, as introduced in [16]. See Section 3.1 below for further discussion.
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3. Deformation quantization of G

Now that we have described our Poisson–Lie group G, we wish to construct its quantum group counterpart. The Poisson
data should guide our direction of quantization.

In Section 3.2 of [13], we obtained a C∗-bialgebra that can be reasonably considered as a quantum semigroup
corresponding to G. The method was via a ‘‘cocycle bicrossed product’’ construction, as in [15] (see also Section 8 of [19]).
However, the full construction of the quantum group was not carried out, for instance the existence proof of an appropriate
Haarweight. In addition, it will be desirable to show amore comprehensive relationship between the Poisson–Lie group and
the quantum group, including the deformation picture. We will fill in these gaps as we review and improve our quantum
group construction.

3.1. Poisson bracket of the cocycle perturbation type

The Poisson bracket on G, as obtained in Proposition 2.4 above, is of the ‘‘cocycle perturbation’’ type studied in
Theorems 2.2 and 2.3 of [16]. Let us be more specific.

Since we are identifying G ∼= g, our Poisson bracket on G may be also regarded as a Poisson bracket on g = h∗, where h

is the Heisenberg Lie algebra noted earlier. Let z denote the center of h, spanned by the basis element z ∈ h, and let us write
q = z⊥ ⊆ g. Then we may regard the x, y, x′, y′

∈ Rn as elements of h/z = span(xi, yi : i = 1, . . . , n) and the r ∈ R as
elements of g/q.

Consider the vector space V = C∞(g/q), and give it the trivialU(h/z)-module structure. Suggested by the Poisson bracket
expression given in Proposition 2.4, let ω : h/z × h/z → V be defined by

ω

(x, y), (x′, y′); r


= r


β(x, y′) − β(x′, y)


+

r2

2

n
i,k=1

Jik(yky′

i − yiy′

k). (3.1)

Then ω is clearly a skew-symmetric bilinear map, and is a Lie algebra cocycle for h/z, trivially, since h/z is an abelian Lie
algebra.

Meanwhile, with h/z being abelian, the linear (or ‘‘Lie–Poisson’’) Poisson bracket on (h/z)∗ is the trivial one. Therefore,
our Poisson bracket on h∗ is essentially the sum of the (trivial) linear Poisson bracket on (h/z)∗ and the cocycle ω. We thus
have the following conclusion.

Proposition 3.1. Consider the Poisson bracket on G, obtained in Proposition 2.4, which is also regarded as defined on g = h∗. It
is a ‘‘cocycle perturbation’’ of the linear Poisson bracket on h∗, in the sense of [16].

Proof. The functions in V = C∞(g/q) can be canonically realized as functions in C∞(g), by the ‘‘pull-back’’ using the natural
projection of g onto g/q. In addition, the elements in h are linear functions on g. We thus have h + V ⊆ C∞(g), whereas
h ∩ V = z.

Meanwhile, the cocycle ω on h/z (which takes values in V ) naturally determines a Lie bracket on h/z ⊕ V , by central
extension. Since h ∩ V = z, we see that h/z ⊕ V ∼= h + V , as vector spaces. Under this spatial isomorphism, we can thus
transfer the Lie bracket on h/z ⊕ V to a Lie bracket on h + V , denoted by [ , ]h+V . This Lie bracket is essentially a ‘‘perturbed
Lie bracket’’ of the Lie bracket on h.

With h + V ⊆ C∞(g), we can give an alternative interpretation of our Poisson bracket in Proposition 2.4, as follows:

{f , g}(µ) =

df (µ), dg(µ)


h+V (µ),

where µ ∈ g. Here, df (µ), dg(µ) ∈ h(⊆ h + V ), as shown in the proof of Proposition 2.4; the bracket operation in h + V is
as described in the previous paragraph; and we are regarding an element in h + V as a function contained in C∞(g). Having
come from the ‘‘perturbed Lie bracket’’ of the Lie bracket on h, our (non-linear) Poisson bracket is a ‘‘cocycle perturbation’’
of the linear Poissson bracket.

For amore detailed discussion, including some technicalities involving the cocycles, refer to Theorems 2.2 and 2.3 of [16],
and the paragraphs about the theorems. �

Remark. When J = O (zero matrix), the cocycle ω given in Eq. (3.1) becomes

ωJ=O

(x, y), (x′, y′); r


= r


β(x, y′) − β(x′, y)


.

It is a linear function on g/q, so we may write it as

ωJ=O

(x, y), (x′, y′)


=

β(x, y′) − β(x′, y)


z,

where z is the basis vector spanning z. In other words, ωJ=O is a cocycle for h/z having values in z. It determines the Lie
bracket on h, and, therefore, it corresponds to the linear (Lie–Poisson) Poisson bracket on h∗. What all this means is that the
‘‘perturbation’’ in our case is encoded by the matrix J and the associated cocycle ω.
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3.2. The bicrossed product construction

Since we realized our Poisson bracket as a cocycle perturbation of the linear Poisson bracket, we may follow the steps
given in Section 3 of [16] to construct a deformation quantization of


C0(G), { , }


. The method would use the framework of

twisted crossed product C∗-algebras, in the sense of Packer and Raeburn [24].
However, this method, while valid, gives only the deformation at the C∗-algebra level. Since we are interested in the

construction of a quantum group, let us employ a different approach, following instead the one given in [13]. This approach
is based on the ‘‘bicrossedproduct construction’’ of Vaes andVainerman [15], aswell as the earlierwork byBaaj and Skandalis
(Section 8 of [19]). Clarification of the deformation picture will be postponed to Section 3.3 below.

First, from our Lie algebra cocycle ω given in Eq. (3.1), we obtain a continuous family of T-valued group cocycles for the
Lie group H/Z of h/z.

Proposition 3.2. Fix an element r ∈ g/q, and define the map σ r
: H/Z × H/Z → T by

σ r(x, y), (x′, y′)


= ē

rβ(x, y′)


ē


r2

2

n
i,k=1

Jikyky′

i


,

where e[t] = e2π it , and so ē[t] = e−2π it . Then each σ r is a T-valued, normalized group cocycle for H/Z. In addition, r → σ r

forms a continuous field of cocycles.

Proof. Let h = (x, y), h′
= (x′, y′), h′′

= (x′′, y′′) be elements of H/Z , which is just an abelian group under addition. We can
easily verify the cocycle identity, as follows:

σ r(hh′, h′′)σ r(h, h′) = ē

r

β(x, y′′) + β(x′, y′′) + β(x, y′)


ē


r2

2

n
i,k=1

Jik(yky′′

i + y′

ky
′′

i + yky′

i)


= σ r(h, h′h′′)σ (h′, h′′).

We also have σ r(h, 0) = 1 = σ r(0, h), where 0 = (0, 0) is the identity element of H/Z . From the definition, the continuity
is quite clear. �

Remark. In general, constructing the group cocycle by ‘‘integrating’’ the Lie algebra cocycle is not necessarily easy. For a
little more discussion on this matter, see Section 3 of [16].

Our Poisson bracket from Proposition 2.4 and the group cocycle arising from it, as obtained in Proposition 3.2 above,
strongly suggest that it will be most convenient for us to work with the (x, y; r) variables, where (x, y) ∈ H/Z and
r ∈ g/q = h∗/z⊥. The dual space to H/Z is (h/z)∗ = z⊥, whose elements are the (p, q). Following this observation, we
will break our group G into two parts, obtaining the following matched pair of groups.

Definition 3.3. Let G1 and G2 be subgroups of G, defined by

G1 =

(0, 0, r) : r ∈ R


, G2 =


(p, q, 0) : p, q ∈ Rn.

Clearly, as a space G ∼= G2 × G1, while G1 and G2 are closed subgroups of G, such that G1 ∩ G2 =

(0, 0, 0)


. Moreover,

any element (p, q, r) ∈ G can be (uniquely) expressed as a product, (p, q, r) = (0, 0, r)(p, q, 0), with (0, 0, r) ∈ G1 and
(p, q, 0) ∈ G2. In other words, the groups G1 and G2 form amatched pair (or, couple assorti as in Section 8 of [19]).

From the matched pair (G1,G2), we naturally obtain the group actions α : G1 × G2 → G2 and γ : G2 × G1 → G1,
defined by

αr(p, q) :=


p, q − r

n
i,k=1

Jikpiqk


, γ(p,q)(r) := r.

Here we are using the obvious identification of (p, q) with (p, q, 0), and similarly for r and (0, 0, r). Note that these actions
are defined so that we have


αr(p, q)


γ(p,q)(r)


=

p, q − r


i,k Jikpiqk, 0


(0, 0, r) = (p, q, r).

Let us now convert the informationwe obtained so far into the language of Hilbert space operators and operator algebras.
Recall that we chose a Lebesgue measure on H(= h), which is the Haar measure for H . On G(= g = h∗), which is considered
as the dual vector space of H , we give the dual Lebesgue measure. This will also be the Haar measure for G. These measures
are chosen so that the Fourier transform becomes the unitary operator (from L2(H) to L2(G)), and the Fourier inversion
theorem holds. Similarly, a ‘‘partial’’ Fourier transform can be considered, for instance, between functions in the (p, q; r)
variables and those in the (x, y; r) variables. See Remark 1.7 of [11].

First, we define the multiplicative unitary operators X ∈ B

L2(G1 × G1)


and Y ∈ B


L2(G2 × G2)


, associated with the

groups G1 and G2. See [19]. Namely, define

Xξ(r; r ′) = ξ(r + r ′
; r ′), Yζ (p, q; p′, q′) = ζ (p + p′, q + q′

; p′, q′),
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for ξ ∈ L2(G1 ×G1) and ζ ∈ L2(G2 ×G2). By Fourier transform, F : L2(G2) ∼= L2(H/Z), the operator Y can be also expressed
as an operator in B


L2(H/Z × H/Z)


, in the (x, y) variables. In other words, for convenience, we will regard F −1YF to be

the same as Y . We then have

Yζ (x, y; x′, y′) = ζ (x, y; x′
− x, y′

− y), ζ ∈ L2(H/Z).

Remark. By the theory of multiplicative unitary operators (see [19]), the operator X determines the (mutually dual)
C∗-bialgebras C0(G1) and C∗(G1), and, similarly, the operator Y determines the C∗-bialgebras C0(G2) and C∗(G2). Working
with the (x, y) variables, by the Fourier transform, we have C0(G2) ∼= C∗(H/Z) and C∗(G) ∼= C0(H/Z). Since the groups are
abelian, all the computations are quite simple.

For convenience, a function f ∈ C0(G1) will be considered to be the same as the multiplication operator Lf ∈ B

L2(G1)


,

defined by Lf ξ(r) = f (r)ξ(r). Similarly for g ∈ C0(G2), which will be also considered as the multiplication operator
λg ∈ B


L2(G2)


. In the (x, y) variables, this is equivalent to saying that, for g ∈ Cc(H/Z) ⊆ C∗(H/Z), the operator

Lg ∈ B

L2(H/Z)


is such that, for ζ ∈ L2(H/Z), we have Lgζ (x, y) =


g(x̃, ỹ)ζ (x − x̃, y − ỹ)dx̃dỹ.

Next,we try to encode the actionsα andγ into an operator. Note that, at the level of theC∗-algebrasC0(G1) andC0(G2), the
group actions α and γ we defined above (though γ is trivial) are expressed as coactions α : C0(G2) → M


C0(G2) ⊗ C0(G1)


and γ : C0(G1) → M


C0(G2) ⊗ C0(G1)


, given by

α(g)(p, q; r) = g


p, q − r

n
i,k=1

Jikpiqk


= g


αr(p, q)


, γ (f )(p, q; r) = f (r) = f


γ(p,q)(r)


.

The coactions α and γ can be realized using a certain unitary operator Z , as follows.

Proposition 3.4. Let Z ∈ B

L2(G)


= B


L2(G2 × G1)


be defined by

Zξ(p, q; r) = ξ


p, q − r

n
i,k=1

Jikpiqk; r


.

Then we have, for g ∈ C0(G2) and f ∈ C0(G1),

Z(λg ⊗ 1)Z∗
= (λ ⊗ L)


α(g)


, Z(1 ⊗ Lf )Z∗

= (λ ⊗ L)

γ (f )


.

Proof. The computations are straightforward. �

Remark. By using the operator realizations g = λg and f = Lf , as well as α(g) = (λ ⊗ L)

α(g)


and γ (f ) = (λ ⊗ L)


γ (f )


,

we may simply write the above result as α(g) = Z(g ⊗ 1)Z∗ and γ (f ) = Z(1 ⊗ f )Z∗.

As indicated above, it is more convenient to work with the (x, y; r) variables. So from now on, consider the Hilbert
space H := L2(H/Z × G1), consisting of the L2-functions in the (x, y; r) variables. Since we know, by the Fourier transform
F : L2(G2) ∼= L2(H/Z), that C0(G2) ∼= C∗(H/Z), we may as well regard the coactions α and γ to be on C∗(H/Z) and C0(G1).
(In that case, the definitions of α and γ should bemodified accordingly.) The operator Z ∈ B


L2(G2×G1)


of Proposition 3.4

then becomes

(F −1
⊗ 1)Z(F ⊗ 1)ξ(x, y; r) =


ξ(x̃, ỹ; r)ē


p · x̃ +


q − r


i,k

Jikpiqk


· ỹ


e[p · x + q · y] dx̃dỹdpdq

=


ξ(x̃, ỹ; r)ē


p ·


x̃ − x − r


i,k

Jikỹkxi


ē

q · (ỹ − y)


dx̃dỹdpdq

= ξ


x + r

n
i,k=1

Jikykxi, y; r


.

Here, in the second equality, we used the fact that

r


i,k Jikpiqk

· ỹ = r


i,k Jikpiỹk = p ·


r


i,k Jikxiỹk

. And, in the last

equality, the Fourier inversion theorem was used. From now on, for convenience, we will regard the operator Z ∈ B(H) to
mean the operator (F −1

⊗ 1)Z(F ⊗ 1) above.
As indicated in Section 8 of [19], thematched pair (G1,G2), togetherwith the actionsα and γ , determines amultiplicative

unitary operator. This is shown in part (1) of the following proposition. However, this only comes from the group structure
on G, and not its Poisson structure. So it will not suffice for our purposes. In our case, we actually need to go a little further,
and introduce a certain cocycle termΘ . The definition ofΘ comes directly from the Poisson bracket, given in Proposition 2.4
(see also Proposition 3.2). Our multiplicative unitary operator, incorporating both the matched pair and the cocycle, is
obtained in part (2) of the following proposition. Proposition 3.5 below is none other than Propostion 3.12 in [13].
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Proposition 3.5. (1) Define the unitary operator V ∈ B(H ⊗ H) = B

L2(H/Z × G1 × H/Z × G1)


, by V = (Z12X24Z∗

12)Y13,
using the standard leg notation. It is multiplicative, and it determines the two C∗-algebras:

AV ∼= C0 (G1)oγ (H/Z) and ÂV ∼= C0 (H/Z)oα G1.

They are actually (mutually dual) C∗-bialgebras, whose comultiplications are given by ∆V (a) = V (a ⊗ 1)V ∗ for a ∈ AV , and
∆̂V (b) = V ∗(1 ⊗ b)V for b ∈ ÂV .

(2) Let Θ(x, y, r; x′, y′, r ′) := ē

r ′β(x, y′)


ē

r ′2

2


i,k Jikyky

′

i


, considered as a unitary operator contained in B(H ⊗ H). Then

the function Θ is a cocycle for V . In this way, we obtain a multiplicative unitary operator VΘ := VΘ ∈ B(H ⊗ H). Specifically,

VΘξ(x, y, r; x′, y′, r ′) = e


r ′2

2


i,k

Jikyk(y′

i − yi)


ē

r ′β(x, y′

− y)


× ξ


x − r ′


i,k

Jikykxi, y, r + r ′
; x′

− x + r ′

i,k

Jikykxi, y′
− y, r ′


.

The C∗-bialgebras associated with VΘ are

S ∼= C0 (G1)oσ
γ (H/Z), and Ŝ ∼= C0 (H/Z)oα G1,

together with the comultiplications ∆(a) := VΘ(a ⊗ 1)VΘ
∗ for a ∈ S, and ∆̂(b) := VΘ

∗(1 ⊗ b)VΘ for b ∈ Ŝ. Here, σ : r → σ r

is a continuous field of cocycles such that σ r

(x, y), (x′, y′)


= ē


r2
2


i,k Jikyky

′

i


ē

rβ(x, y′)


.

Proof. (1) The choice of the operator V , arising from the matched pair (G1,G2), is suggested by Section 8 of [19]. As noted
above, the operators X and Y encode the groups G1 and G2, while the actions α and γ are encoded by the operator Z . The
multiplicativity of V is just a simple consequence of the fact that G is a group. From the general theory of multiplicative
unitary operators [19], we thus obtain the (mutually dual) C∗-bialgebras AV and ÂV by considering the ‘‘left [and right]
slices’’ of V . The proof for the characterizations of the two C∗-algebras is also straightforward, and will be skipped.
(2) The functionΘ is a cocycle for V , since VΘ is alsomultiplicative. The verification of the pentagon equation,W12W13W23 =

W23W12 forW = VΘ , is straightforward.
As usual, the C∗-bialgebras associated with VΘ are obtained by

S =

(ω ⊗ idH )(VΘ) : ω ∈ B(H)∗


⊆ B(H)


,

Ŝ =

(idH ⊗ ω)(VΘ) : ω ∈ B(H)∗


⊆ B(H)


.

Their comultiplications are defined in the standard way, via the multiplicative unitary operator. For the verification of the
C∗-algebra realizations of S and Ŝ as twisted crossed product C∗-algebras above, refer to the proof of Propostion 3.12 of [13].
Since the groups G1 and H/Z are amenable (being abelian), the notions of the reduced and full (twisted) crossed products
coincide. �

Observe that the cocycle term for the twisted crossed product C∗-algebra follows directly from the underlying Poisson
structure. In fact, the C∗-bialgebra (S, ∆) is essentially a ‘‘quantized C∗(H)’’ or a ‘‘quantized C0(G)’’. For instance, if J ≡ 0,
then it is not difficult to show that S ∼= C∗(H) as an algebra. In addition, see Section 3.3 below for the clarification that (S, ∆)
is indeed a deformation quantization of C0(G), in the direction of its Poisson bracket.

3.3. (S, ∆) as a deformation quantization of (G, {, })

We constructed above a C∗-bialgebra (S, ∆), by means of the multiplicative unitary operator VΘ . There are strong
indications that (S, ∆) should be an appropriate quantum counterpart to the Poisson–Lie group


G, { , }


. In this subsection,

we make this picture clearer, by showing that the C∗-algebra S is a (strict) deformation quantization of C0(G), in the sense
of Rieffel [6,20].

Let us analyze the C∗-algebra S a bit. For f ∈ Cc(G), we can carry it into a function of the (x, y, r) variables by the (partial)
Fourier transform f → f ∨

∈ C0(H/Z ×G1), where f ∨(x, y, r) =

f (p, q, r)e[p ·x+q ·y] dpdq. Considering this, let us define

the operator Lf ∈ B(H) by

Lf ξ(x, y, r) :=


f ∨(x̃, ỹ, r)σ r(x̃, ỹ), (x − x̃, y − ỹ)


ξ(x − x̃, y − ỹ, r)dx̃dỹ, (3.2)

where σ is the cocycle given in Proposition 3.5(2).
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Remark. If σ ≡ 1, the above representation L : Cc(G) ∋ f → Lf ∈ B(H) is equivalent (by the partial Fourier transform)
to λ ⊗ L : Cc(G2 × G1) → B


L2(G2 × G1)


= B


L2(G)


, with the representations L and λ on C0(G1) and C0(G2) defined

earlier. See also Theorem3.6(1). Since there is noworry about confusion, we chose to use the same name L for our (extended)
representation.

By the result of Proposition 3.5(2), it is clear that S ∼= L

Cc(G)

∥ ∥

, as a C∗-algebra. What all this means is that we do have
a (deformed) ∗-algebra structure at the level of the functions on G, inherited from the ∗-algebra structure on S. To be more
precise, let A = S3c(G)


⊆ C0(G)


, the space of Schwartz functions having compact support in the r-variable. It is slightly

larger than C∞
c (G), and is the image under the partial Fourier transform, ∧, of the space S3c(H/Z × G1)


⊆ C0(H/Z × G1)


.

On A, we can define the deformed product, ×, by

(f × g)(p, q, r) = (f ∨
∗σ g∨)∧(p, q, r)

=


ē[p · x + q · y]f ∨(x̃, ỹ, r)g∨(x − x̃, y − ỹ, r)

× ē


r2

2


i,k

Jikỹk(yi − ỹi)


ē

rβ(x̃, y − ỹ)


dx̃dỹdxdy. (3.3)

Using the definitions of f ∨ and g∨, together with the Fourier inversion theorem, this expression becomes

(f × g)(p, q, r) =


ē

(q − q̃) · y


f


p + ry, q +

r2

2


i,k

Jikyiqk, r


g(p, q̃, r)dq̃dy. (3.4)

Similarly, the involution on A is given by

f ∗(p, q, r) =

(f ∨)∗

∧
(p, q, r) =


f (p̃, q̃, r)ē


(p − p̃) · x + (q − q̃) · y


× ē


r2

2


i,k

Jikyiyk


ē

rβ(x, y)


dp̃dq̃dxdy. (3.5)

Clearly, the ∗-algebra (A, ×, ∗) is a pre-C∗-algebra, together with the C∗-norm f → ∥Lf ∥. Here, the representation L is just

as in Eq. (3.2), having been extended to A. By construction, we know that S ∼= L(A)
∥ ∥

.
To show that the C∗-algebra S is a deformation of


C0(G), { , }


, let us now introduce the deformation parameter h̄. We

will follow the general procedure given in Theorem 3.4 of [16]. In our case, with the group H/Z being abelian, it does not
need to vary and we only need to incorporate the parameter h̄ to the cocycle σ . Namely, consider the cocycle σh̄ : r → σ r

h̄ ,
given by

σ r
h̄


(x, y), (x′, y′)


= ē


h̄r2

2


i,k

Jikyky′

i


ē

h̄rβ(x, y′)


.

Then in exactly the same way as in Eqs. (3.4) and (3.5), but by using the cocycle σh̄ instead, we can construct on the function
space A the deformed multiplication ×h̄ and the involution ∗h̄ . As before, each


A, ×h̄,

∗h̄

is a pre-C∗-algebra. Similarly to

Eq. (3.2), the functions f ∈ A can be regarded as operators, with the operator norm now denoted by ∥ ∥h̄. Let us define Sh̄ as
the C∗-completion of


A, ×h̄,

∗h̄

, under ∥ ∥h̄. Using these ingredients, we can now describe the deformation quantization

picture.

Theorem 3.6. Recall the Poisson bracket { , } on G, from Proposition 2.4. Let A = S3c(G) be the (dense) subspace of C0(G), as
defined above. For each h̄ ∈ R, define on A the deformed multiplication, ×h̄, and the involution, ∗h̄ , as in the previous paragraph,
together with the corresponding C∗-norm ∥ ∥h̄. Then we have the following.

(1) For h̄ = 0, the operations ×h̄, ∗h̄ are exactly the pointwise product and the complex conjugation on A

⊆ C0(G)


. Also

Sh̄=0 ∼= C0(G), as a C∗-algebra.
(2) The C∗-algebras {Sh̄}h̄∈R form a continuous field of C∗-algebras. In particular, the map h̄ → ∥f ∥h̄ is continuous for any f ∈ A.
(3) For any f , g ∈ A and (p, q, r) ∈ G, we have the following pointwise convergence:

1
h̄
(f ×h̄ g − g ×h̄ f )(p, q, r) −→

i
2π

{f , g}(p, q, r),

as h̄ → 0.
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(4) The convergence in (3) is actually stronger. In fact, for f , g ∈ A, we have

lim
h̄→0

 f ×h̄ g − g ×h̄ f
ih̄

−
1
2π

{f , g}

h̄

= 0. (3.6)

All this means that the ∗-algebras

A, ×h̄,

∗h̄

h̄∈R provide a ‘‘strict deformation quantization’’ (in the sense of Rieffel [6,20]) of

A

⊆ C0(G)


, in the direction of the Poisson bracket (1/2π){ , }.

Proof. This is a special case of Theorem 3.4 of [16]. But, we will still carry out some main aspects of the proof.
(1) If h̄ = 0, the cocycle term becomes σ ≡ 1, and can be ignored. By the Fourier inversion theorem, Eqs. (3.4) and (3.5) thus
become

(f × g)(p, q, r) =


ē

(q − q′) · ỹ


f (p, q′, r)g(p, q, r)dq′dỹ = f (p, q, r)g(p, q, r),

f ∗(p, q, r) =


f (p̃, q̃, r)ē


(p − p̃) · x + (q − q̃) · y


dp̃dq̃dxdy = f (p, q, r).

It is also easy to see that Sh̄=0 ∼= C0(G), with its sup-norm as the C∗-norm. When h̄ = 1, we would recover the C∗-algebra S
of Proposition 3.5(2).
(2) As for the C∗-algebras {Sh̄}h̄∈R forming a continuous field of C∗-algebras, note that each Sh̄ is really a twisted crossed
product C∗-algebra of an abelian group H/Z , namely Sh̄ ∼= C0 (G1)oσh̄(H/Z), and only the cocycle σh̄ is being changed as the
parameter h̄ varies. Therefore, for each h̄, the ‘‘amenability condition’’ holds, meaning that the notions of the ‘‘full’’ and the
‘‘reduced’’ crossed product C∗-algebras coincide. In [25], using the universal property of the full C∗-algebras and also taking
advantage of the property of the reduced C∗-algebras that one is able to work with their specific representations, Rieffel
gave an answer to the problem of the continuity of certain field of crossed product C∗-algebras. In short, under suitable
conditions, Rieffel has shown that the field of ‘‘full’’ crossed product C∗-algebras is upper semi-continuous, while the field
of ‘‘reduced’’ crossed product C∗-algebras is lower semi-continuous. Our case is simpler than the general case, and, with the
amenability at hand, it follows that our field of C∗-algebras {Sh̄}h̄∈R is in fact continuous.
(3) For f ∈ A, by the Fourier inversion theorem, we can write it as

f (p, q, r) =


(F −1f )(x̃, ỹ, z̃)ē[p · x̃ + q · ỹ + rz̃] dx̃dỹdz̃.

Since ē[t] = e−2π it , we thus have

df (p, q, r) = (−2π i)


(F −1f )(x̃, ỹ, z̃)ē[p · x̃ + q · ỹ + rz̃]Xdx̃dỹdz̃,

where X = (x̃, ỹ, z̃). Therefore, for f , g ∈ A, the Poisson bracket from Proposition 2.4 becomes

{f , g}(p, q, r) = (−4π2)


(F −1f )(x̃, ỹ, z̃)(F −1g)(˜̃x, ˜̃y, ˜̃z)

×


r

β(x̃, ˜̃y) − β(˜̃x, ỹ)


+

r2

2

n
i,k=1

Jik(ỹk ˜̃yi − ỹi ˜̃yk)


× ē

p · (x̃ + ˜̃x) + q · (ỹ + ˜̃y) + r(z̃ + ˜̃z)]dx̃dỹdz̃d˜̃xd ˜̃yd ˜̃z.

In the (x, y, r) variables, by using the partial Fourier transform, this can be rewritten as

{f , g}(p, q, r) = (−4π2)


f ∨(x̃, ỹ, r)g∨(˜̃x, ˜̃y, r)ē


p · (x̃ + ˜̃x) + q · (ỹ + ˜̃y)


×


r

β(x̃, ˜̃y) − β(˜̃x, ỹ)


+

r2

2

n
i,k=1

Jik(ỹk ˜̃yi − ỹi ˜̃yk)


dx̃dỹd˜̃xd ˜̃y. (3.7)

Meanwhile, let us rewrite the deformed product, f ×h̄ g for f , g ∈ A, in a more symmetric form. Basically, we start from
the definition given in Eq. (3.3), together with the adjustment in the cocycle term incorporating the parameter h̄. Perform
the change of variables x − x̃ → ˜̃x and y − ỹ → ˜̃y. Then we would have

(f ×h̄ g)(p, q, r) =


ē

p · (x̃ + ˜̃x) + q · (ỹ + ˜̃y)


f ∨(x̃, ỹ, r)g∨(˜̃x, ˜̃y, r)

× ē

h̄rβ(x̃, ˜̃y)


ē


h̄r2

2


i,k

Jikỹk ˜̃yi


dx̃dỹd˜̃xd ˜̃y.
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It follows that we have
1
h̄
(f ×h̄ g − g ×h̄ f )(p, q, r) =

1
h̄


ē

p · (x̃ + ˜̃x) + q · (ỹ + ˜̃y)


f ∨(x̃, ỹ, r)g∨(˜̃x, ˜̃y, r)

×


ē

h̄rβ(x̃, ˜̃y)


ē


h̄r2

2


i,k

Jikỹk ˜̃yi


− ē


h̄rβ(˜̃x, ỹ)


ē


h̄r2

2


i,k

Jik ˜̃ykỹi


dx̃dỹd˜̃xd ˜̃y. (3.8)

In the above, since ē[t] = e−2π it
= 1 − 2π it + · · ·, we have

1
h̄


ē

h̄rβ(x̃, ˜̃y)


ē


h̄r2

2


i,k

Jikỹk ˜̃yi


− ē


h̄rβ(˜̃x, ỹ)


ē


h̄r2

2


i,k

Jik ˜̃ykỹi



= (−2π i)


rβ(x̃, ˜̃y) +

r2

2


i,k

Jikỹk ˜̃yi − rβ(˜̃x, ỹ) −
r2

2


i,k

Jik ˜̃ykỹi


+ O(h̄).

Therefore, comparing with Eq. (3.7), we can readily observe the pointwise convergence:

1
h̄
(f ×h̄ g − g ×h̄ f )(p, q, r) −→

i
2π

{f , g}(p, q, r),

as h̄ → 0.
(4) In our case, each Sh̄ (for h̄ ≠ 0) is isomorphic to the (reduced) twisted crossed product C∗-algebra C0 (G1)oσh̄(H/Z),
and, therefore, the C∗-norm ∥ ∥h̄ is dominated by the L1-norm on L1


H/Z, C0(G1)


. By the partial Fourier transform in the

r(∈ G1) variable, this L1-norm is equivalent to the L1-norm on L1(H/Z × Z) = L1(H). Even when h̄ = 0, for which we know
Sh̄=0 ∼= C0(G) ∼= C∗(H) by the Fourier transform, it holds that the C∗-norm ∥ ∥h̄=0 is also dominated by the L1-norm on
L1(H). All this means that, to show the norm convergence in Eq. (3.6), we just need to show the convergence with respect
to the L1-norm on L1(H), transferred to A ⊆ L1(G) by the Fourier transform.

This can be achieved by Lebesgue’s dominated convergence theorem. We already know the pointwise convergence in
A, while, in A = S3c(G), we are able to find an L1-bound for the expressions, (f ×h̄ g − g ×h̄ f )/h̄ − (i/2π){f , g}, since the
convergence involving the cocycle terms can be controlled in a compact set on which the convergence is uniform. �

Remark. In the proof of item (2) above, we were aided by the fact that H/Z is abelian. In general, however, the group may
not be abelian, andmay also need to vary (as the parameter value changes) in the definition of the C∗-algebras Sh̄. This would
make the proof of the continuity of {Sh̄}h̄∈R more difficult. Our current example does not have this problem, but refer to the
proof of Theorem 3.4 in [16] for a more general situation.

Meanwhile, as for the proof of the correspondence relation in Eq. (3.6), note that a pointwise convergence result like (3)
would usually be sufficient for most of the formal power series frameworks, like in the case of a QUE algebra. But, for our
‘‘strict deformation quantization’’ framework, we further needed to show the norm convergence, as in (4) above. See [6,20]
for more general discussions. The idea for the proof of (4) was obtained from the one given in [26], with a small adjustment
of restricting things to S3c(G), instead of the space S(G) of all Schwartz functions on G.

3.4. The comultiplication on (S, ∆)

To further strengthen our case that (S, ∆) is a ‘‘quantized C0(G)’’, let us look at the comultiplication ∆, which will show
that it reflects the group multiplication law on G.

Proposition 3.7. With the representation f → Lf ∈ B(H), f ∈ A, defined in Eq. (3.2), the comultiplication ∆ from
Proposition 3.5(2) becomes

∆(Lf ) = (L ⊗ L)∆f ,

where ∆f ∈ Cb(G × G) is the function defined by


∆f

(p, q, r; p′, q′, r ′) = f


p + p′, q + q′

+ r ′

i,k

Jikpiqk, r + r ′


.

Proof. Write Lf =

(F −1f )(x̃, ỹ, z̃)Lx̃,ỹ,z̃dx̃dỹdz̃, where F −1f ∈ Cc(H) is the (inverse) Fourier transform of f . Then Lx̃,ỹ,z̃ ∈

B(H) is such that

Lx̃,ỹ,z̃ξ(x, y, r) = ē[rz̃]σ r(x̃, ỹ), (x − x̃, y − ỹ)

ξ(x − x̃, y − ỹ, r).
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Comparing with the definition of Lf in Eq. (3.2), we may regard Lx̃,ỹ,z̃ = LF , where the function F ∈ Cb(G) is such that
F(p, q, r) = ē[p · x̃ + q · ỹ + rz̃]. Indeed, Lx̃,ỹ,z̃ is contained in the multiplier algebraM(S). In a sense, the operators Lx̃,ỹ,z̃ , for
(x̃, ỹ, z̃) ∈ H , form the building blocks for the ‘‘regular representation’’ L (or, equivalently, for C∗-algebra S).

For ζ ∈ H , we have
∆(Lx̃,ỹ,z̃)


ζ (x, y, r; x′, y′, r ′) = VΘ(Lx̃,ỹ,z̃ ⊗ 1)VΘ

∗ζ (x, y, r; x′, y′, r ′)

= ē

(r + r ′)z̃


ē


r2

2


i,k

Jikỹk(yi − ỹi)


ē

rβ(x̃, y − ỹ)


× ē


r ′2

2


i,k

Jikỹk(y′

i − ỹi)


ē

r ′β(x̃, y′

− ỹ)

ē


rr ′

i,k

Jikỹk(yi − ỹi)



× ζ


x − x̃ − r ′


i,k

Jikỹkxi, y − ỹ, r; x′
− x̃, y′

− ỹ, r ′


.

Meanwhile, consider ∆F ∈ Cb(G × G), given by

(∆F)(p, q, r; p′, q′, r ′) = ē


(p + p′) · x̃ + (q + q′) · ỹ + r ′


i,k

Jikpiỹk + (r + r ′)z̃


.

Then, by a straightforward computation using the Fourier inversion theorem, we can see that, for ζ ∈ H ,

(L ⊗ L)∆Fζ (x, y, r; x′, y′, r ′) =

∆(Lx̃,ỹ,z̃)


ζ (x, y, r; x′, y′, r ′).

In other words, (L⊗ L)∆F = ∆(LF ). Remembering the definitions, it follows easily that ∆(Lf ) = (L⊗ L)∆f for any f ∈ Cc(G),
where ∆f is as defined above. �

Remark. This proposition shows that, for f ∈ Cc(G), the comultiplication sends it to ∆f ∈ Cb(G × G), such that

(∆f )(p, q, r; p′, q′, r ′) = f

(p, q, r)(p′, q′, r ′)


,

preserving the group multiplication law on G as given in Eq. (2.1). Together with the result of Theorem 3.6, this result
supports our assertion made earlier that (S, ∆) is a ‘‘quantized C0(G)’’.

At this moment, the C∗-bialgebra (S, ∆) is just a quantum semi-group. For it to be properly considered as a locally
compact quantum group, we need further discussions on maps like antipode and Haar weight. This is given in the following
section.

Meanwhile, notice the similarity between our example (S, ∆) above and the one constructed by Enock and Vainerman
in Section 6 of [27]. Looking at the comultiplications and the cocycles involved, we see some resemblance. However, the
methods of construction are rather different between the two. In addition, there is another crucial difference. Namely, in the
example of [27], the underlying von Neumann algebra is isomorphic to the group von Neumann algebra L(H) = C∗(H)′′ of
H , while, in our case, S is isomorphic to a ‘‘twisted’’ crossed product algebra: unless J ≡ 0, the C∗-algebra S is not isomorphic
to C∗(H).

In the author’s opinion, the example (S, ∆) given here has more merit, considering that (1) its Poisson–Lie group
counterpart and its multiplicative unitary operator have all been obtained; (2) the relationship between the Poisson bracket
and the cocycle bicrossed product construction of the multiplicative unitary operator have been manifested; and (3) that
the underlying C∗-algebra is built on the framework of twisted crossed product algebras (more general than ordinary group
C∗-algebras or group von Neumann algebras).

4. The quantum group structure

4.1. (S, ∆) is a locally compact quantum group

We now turn our attention to showing that the C∗-bialgebra (S, ∆) we constructed above is indeed a locally compact
quantum group, in the precise sense of Kustermans and Vaes [28,29], or that of Masuda et al. [30]. We could construct the
Haar weight and other maps, along the lines of the general results by Van Daele [31,32]. However, since it can be shown that
our example is a case of a ‘‘cocycle bicrossed product’’ (in the sense of [15]), it is not really necessary to be overly technical.
See Lemma 4.1 and Theorem 4.2 below.

First, recall the matched pair (G1,G2) we considered in Definition 3.3. Our formulation at the time was motivated by the
Poisson geometric data. But this time, to make things to fit the algebraic framework given in [15], let us work with the pair
(G1,H/Z), where H/Z is the dual of G2. To be more precise, consider

G1 =

(0, 0, r) : r ∈ R


and H/Z =


(x, y, 0) : x, y ∈ Rn.
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We may use the (partial) Fourier transform to move between the functions on G2 and those on H/Z . It is not difficult to
see that (G1,H/Z) forms a matched pair. By abuse of notation, we again denote the actions by α : G1 × H/Z → H/Z and
γ : H/Z × G1 → G1. We then have

αr(x, y) :=


x + r

n
i,k=1

Jikykxi, y


, γ(x,y)(r) := r.

At the algebra level, we obtain the ∗-isomorphism τ : L∞(G1) ⊗ L∞(H/Z) → L∞(G1) ⊗ L∞(H/Z), given by


τ(f )


r; (x, y)


= f


γ(x,y)(r); αr(x, y)


= f


r; x + r

n
i,k=1

Jikykxi, y


.

In fact, these computations were carried out earlier, though implicitly, in our discussion following Proposition 3.4 leading
up to Proposition 3.5.

Lemma 4.1. As above, consider the matched pair (G1,H/Z), together with the corresponding actions α and γ . Define U :

G1 × G1 × H/Z → T and V : G1 × H/Z × H/Z → T, given by

U ≡ Id, and V

r; (x, y), (x′, y′)


= ē


r2

2


i,k

Jiky′

kyi


ē

rβ(x′, y)


.

Then (τ , U, V) is a ‘‘cocycle matching’’ of L∞(G1) and L∞(H/Z), with their natural quantum group structures.

Remark. Observe that V is such that V

r; (x, y), (x′, y′)


= σ r


(x′, y′), (x, y)


, where σ is the cocycle function given in

Proposition 3.5(2).

Proof. Using the definition, we can verify the cocycle conditions given in Eq. (4.2) of [15]. Namely, themapsU andV satisfy

• U

r, r ′

; αr ′′(x, y)

U

r + r ′, r ′′

; (x, y)


= U(r ′, r ′′
; (x, y)


U

r, r ′

+ r ′′
; (x, y)


,

• V

γ(x,y)(r); (x′, y′), (x′′, y′′)


V

r; (x, y), (x′′

+ x′, y′′
+ y′)


= V


r; (x, y), (x′, y′)


V

r; (x′

+ x, y′
+ y), (x′′, y′′)


,

• V

r + r ′

; (x, y), (x′, y′)

U

r, r ′; (x′ + x, y′ + y)


= U


r, r ′; (x, y)


U

γαr′ (x,y)(r), γ(x,y)(r ′); (x′, y′)


× V


r; αr ′(x, y), αγ(x,y)(r ′)(x

′, y′)

V

r ′
; (x, y), (x′, y′)


.

This is to be expected, considering that V comes from the cocycle function σ . Thus by Lemma 4.11 of [15], we prove the
result. �

Therefore, byDefinition 2.2 in [15] and Theorem2.13 in [15],we obtain the ‘‘cocycle bicrossed product’’M = L∞(G1)α,Un
L∞(H/Z), which is a locally compact quantum group. The associated dual locally compact quantum group is denoted by M̂
(see again Theorem 2.13 of [15]). By construction, it turns out that our (S, ∆) obtained in the previous section is really the
C∗-algebra counterpart to M̂ . The result is as follows.

Theorem 4.2. Our C∗-bialgebra (S, ∆) is none other than the dual of the cocycle bicrossed product obtained by the matched pair
(G1,H/Z) and the cocycle maps U and V . Therefore, we conclude that (S, ∆) is itself a locally compact quantum group.

Proof. An efficient way is to work with the multiplicative unitary operators. So consider W1 ∈ B

L2(G1 × G1)


and

W2 ∈ B

L2(H/Z × H/Z)


such that

W1ξ(r; r ′) = ξ(r; r + r ′), Ŵ2ζ (x, y; x′, y′) = ζ (x, y; x′
+ x, y′

+ y),

for ξ ∈ L2(G1×G1) and ζ ∈ L2(H/Z×H/Z). They determine the natural quantum group structures on L∞(G1) and L∞(H/Z).
By Definition 2.2 of [15], as well as the discussion in Section 4.4 of the same paper, the quantum groups M and M̂ are
determined by the multiplicative unitary operator Ŵ ∈ B


L2(G1 × H/Z × G1 × H/Z)


, defined by

Ŵ = (γ ⊗ id ⊗ id)

(W1 ⊗ 1)U∗


(id ⊗ id ⊗ α)


V(1 ⊗ Ŵ2)


.

In our case, this becomes

Ŵξ(r; x, y; r ′
; x′, y′) = U


γ(x,y)(r); −γ(x,y)(r) + r ′; (x′, y′)


V

r; (x, y), α[−γ(x,y)(r)+r ′](x′, y′)


× ξ


r; α[−γ(x,y)(r)+r ′](x′, y′) + (x, y); −γ(x,y)(r) + r ′

; (x′, y′)


= V

r; (x, y); α[r ′−r](x′, y′)


ξ

r; (x, y) + α[r ′−r](x′, y′); r ′

− r; x′, y′
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= ē


r2

2


i,k

Jiky′

kyi


ē


rβ


x′

+ (r ′
− r)


i,k

Jiky′

kxi, y



× ξ


r; x + x′

+ (r ′
− r)


i,k

Jiky′

kxi, y + y′
; r ′

− r, x′, y′



= e


r2

2


i,k

Jiky′

kyi


ē


rr ′

i,k

Jiky′

kyi


ē

rβ(x′, y)



× ξ


r; x + x′

+ (r ′
− r)


i,k

Jiky′

kxi, y + y′
; r ′

− r, x′, y′


.

By general theory, it is known to be multiplicative, so Ŵ ∈ M̂ ⊗ M . The right slices of Ŵ generate M̂ while the left slices of
Ŵ generateM .

Now, consider an involutive operator K ∈ B

L2(G1 × H/Z)


, defined by

Kξ(r; x, y) = ξ(−r; x + r

i,k

Jikykxi, y). (4.1)

We will postpone the discussion of the nature of the operator K for the time being (it has to do with the ‘‘antipode’’ map on
our quantum group: see Proposition 4.3). Using this, define the operator V̂ by

V̂ = (K ⊗ K)ΣŴ ∗Σ(K ⊗ K).

Here, Σ denotes the flip. Then V̂ is also multiplicative, and the general theory shows that V̂ ∈ M ′
⊗ M̂ , where M ′ is the

commutant of M . See Propostion 2.15 of [29], with the understanding that their J operator is K here, so that we do not
cause any confusion with the skew-symmetric matrix J in our case. The left slices of V̂ generate M̂ while the right slices of
V̂ generate M ′.

After a straightforward computation using the formulas obtained above, we have

V̂ξ(r; x, y; r ′
; x′, y′) = e


r ′2

2


i,k

Jikyk(y′

i − yi)


ē

r ′β(x, y′

− y)


× ξ


r + r ′

; x − r ′

i,k

Jikykxi, y; r ′
; x′

− x + r ′

i,k

Jikykxi, y′
− y


.

Compare this result with the definition of themultiplicative unitary operator VΘ we constructed in Proposition 3.5(2), which
is exactly the same! (To be really precise, we need to flip the (x, y) and the r .) The multiplicative unitary operators being
the same means that the C∗-algebras (or von Neumann algebras) they generate must agree. In particular, considering the
left slices of V̂ = VΘ , we conclude that, at the C∗-algebra level, M̂ and S must coincide. It follows that our (S, ∆) is actually
a C∗-algebraic locally compact quantum group, whose von Neumann algebra envelope is M̂ . �

4.2. Other structure maps: antipode and Haar weight

While the proof that (S, ∆) is a quantum group is done, it will be still useful to know its other quantum group structure
maps, namely, the antipode map and the Haar weight. We will try to be brief here (skipping some details), but we wish to
point out some nice correspondence relations between the classical (Poisson) data and the quantum level, strengthening
our case that (S, ∆) is essentially a ‘‘quantized C0(G)’’.

Correctly constructing the antipode map from the definitions is rather technical. See the main papers [28,29], and also a
new treatment given in [33],which uses the Tomita–Takesaki theory. For our purposes, though,wewill just use the following
characterization of the antipode, denoted here by κ , given in terms of the multiplicative unitary operator:

κ

(ω ⊗ id)(VΘ)


= (ω ⊗ id)(V ∗

Θ). (4.2)

The subspace consisting of the elements (ω ⊗ id)(VΘ), for ω ∈ B(H)∗, is dense in S, and forms a core for κ .
At the level of the dense subspace of functions in Cc(H/Z ×G1), in the (x, y; r) variables, the antipode κ in our case takes

the following form.
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Proposition 4.3. Let κ : Cc(H/Z × G1) → Cc(H/Z × G1) be defined by
κ(f )


(x, y, r) = ē


r2

2


i,k

Jikyiyk


ē

rβ(x, y)


f


−x − r


i,k

Jikykxi, −y, −r


.

This map corresponds to the definition of κ given in Eq. (4.2), and turns out to be a bounded map. By general theory, its extension
to the C∗-algebra S, still denoted by κ , is the antipode map on (S, ∆). Moreover, the antipode map κ is related with the operator
K in Eq. (4.1) by

K(Lf )∗K = Lκ(f ), f ∈ Cc(H/Z × G1),

where Lf ∈ S denotes the operator realization of the function f . It follows that κ2
≡ Id.

Proof. For η, ζ ∈ Cc(H/Z × G1), consider ωη,ζ ∈ B(H)∗, defined by ωη,ζ (T ) := ⟨Tη, ζ ⟩. Since Cc(H/Z × G1) is dense in
H , it is clear that the ωη,ζ are dense in B(H)∗. Meanwhile, by a straightforward calculation, we can show that the operator
(ωη,ζ ⊗ id)(VΘ) can be realized as Lf , where f is a function contained in Cc(H/Z × G1) defined by

f (x, y; r) =


η(x, y, r + r̃)ζ


x + r


i,k

Jikykxi, y, r̃


dr̃.

Similarly, (ωη,ζ ⊗ id)(V ∗
Θ) can be realized as Lg , where

g(x, y; r) =


ē


r2

2


i,k

Jikykyi


ē

rβ(x, y)


η


−x − r


i,k

Jikykxi, −y, −r + r̃


ζ (−x, −y, r̃)dr̃.

By Eq. (4.2), the function g is none other than κ(f ). Comparing it with the expression for f above, we obtain the result of the
proposition. Since the ωη,ζ are dense in B(H)∗, this characterization of the κ map is sufficient.

Meanwhile, we also have K(Lf )∗K = Lκ(f ), where f ∈ Cc(H/Z × G1) and κ(f ) is as above. Calculation is straightforward.
Since K is a bounded operator and involutive, this implies that κ : Lf → Lκ(f ) can be extended to a bounded map on all of
the C∗-algebra S, with κ2

≡ Id. �

Remark. Note that, when σ ≡ 1, we have
κ(f )


(x, y, r) = f


−x − r


i,k

Jikykxi, −y, −r


.

If we express this in the (p, q, r)-variables, by the partial Fourier transform, it becomes
κ(f )


(p, q, r) = f


−p, −q + r

n
i,k=1

Jikpiqk, −r


= f


(p, q, r)−1.

What all this means is that in the commutative case (when σ ≡ 1), the antipode map is just taking the inverse in the group
G. This again strengthens our point that (S, ∆) is a ‘‘quantized C0(G)’’.

Finally, let us turn our attention to the Haar weight on our quantum group (S, ∆). At the classical level, recall that the
group structure on Gwas chosen in Eq. (2.1) so that an ordinary Lebesguemeasure on G = R2n+1 becomes its (left invariant)
Haarmeasure. This suggests building theHaarweight on (S, ∆) from the Lebesguemeasure onG. At the level of the functions
in A = S3c(G), this suggestion is manifested in Definition 4.4 below.

Definition 4.4. (1) On A, define a linear functional ϕ by

ϕ(f ) =


f (p, q, r)dpdqdr.

(2) At the level of the functions in S3c(H/Z×G1), in the (x, y; r) variables, this is equivalent to the linear functional ϕS below:

ϕS(f ) =


f (0, 0; r)dr.

Lemma 4.5. Let ϕS be the linear functional given in Definition 4.4. It satisfies the following ‘‘left invariance property’’:

(id ⊗ ϕS)

(1 ⊗ f )(∆g)


= κ


(id ⊗ ϕS)((∆f )(1 ⊗ g))


, (4.3)

for f , g ∈ S3c(H/Z × G1).
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Proof. Here, the expression (1⊗ f )(∆g)means the function F such that (L⊗L)F = (1⊗Lf )

∆(Lg)


. By using the definitions

of the comultiplication, the product on S, and the definition of the functional ϕS , we have

(id ⊗ ϕS)

(1 ⊗ f )(∆g)


(x, y; r) =


f


−x + r̃


i,k

Jikykxi, −y, r̃


g


x − r̃


i,k

Jikykxi, y, r + r̃



× e

r̃β(x, y)


ē


r̃2

2


i,k

Jikyiyk


dr̃.

By a similar computation, we also have

(id ⊗ ϕS)

(∆f )(1 ⊗ f )


(x, y; r) =


f


x − r̃


i,k

Jikykxi, y, r + r̃


g


−x + r̃


i,k

Jikykxi, −y, r̃



× e

r̃β(x, y)


ē


r̃2

2


i,k

Jikyiyk


dr̃.

Therefore, by using the definition of the antipode map κ , as obtained in Proposition 4.3, we can show the following:

κ

(id ⊗ ϕS)((∆f )(1 ⊗ g))


(x, y; r) = (id ⊗ ϕS)


(1 ⊗ f )(∆g)


(x, y; r). �

In Kac algebra theory, Eq. (4.3) has been used to define the left invariance of the Haar weight. Our proof was given only
at the function level, but it nevertheless provides some justification to our choice of ϕS .

In general, jumping up from the linear functional at the level of the functions to the weight at the operator level can
be quite technical. See papers on the Haar weights on general locally compact quantum groups, such as [31,32]. While we
can actually proceed using a similar approach as in [34], we made a decision above to take advantage of the fact that our
example is a case of a cocycle bicrossed product. The precise construction of the Haar weight can be found in Propostion 2.9
of [15] (see the remark below).

Remark (Some Technical Remarks. See [15]).Wenoted in Theorem 4.2 that (S, ∆) is the C∗-algebra counterpart to the locally
compact quantum group M̂ , obtained from the matched pair


L∞(G1), L∞(H/Z)


and the cocycle maps U and V . (To be

really precise, we need to flip the (x, y) and the r .) Recall also the actions α and γ from Section 4.1. By general theory on the
cocycle bicrossed products, M̂ is generated by γ (M1) and


(id ⊗ id ⊗ ω)(V(1 ⊗ Ŵ2)) : ω ∈ (M2)∗


, where M1 = L∞(G1)

and M2 = L∞(H/Z), in our case. It turns out that γ (M1) is the fixed-point algebra of the dual action, γ̂ , of (M̂2, ∆̂
cop
2 ) on M̂ .

Then T = (id⊗ id⊗ ϕ̂2)γ̂ , where ϕ̂2 is the Haar weight on M̂2, defines a normal, faithful operator-valued weight from M̂ to
γ (M1). From the Haar weight ϕ1 onM1, we can then define the normal, semi-finite weight ϕM̂ on M̂ , by ϕM̂ = ϕ1 ◦ γ −1

◦ T .
From ϕM̂ , by restriction and the flip (r; x, y) → (x, y; r), we would obtain the Haar weight on S.

Having given these remarks and Lemma 4.5, together with the knowledge that Haar weight is unique (up to a scalar
multiplication), we will accept that the linear functional ϕS above does indeed extend to the correct Haar weight on (S, ∆).
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