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Preliminaries

[Observation]: Given a locally compact, Hausdorff space X, its topological properties are
encoded in the (commutative) function algebra C0(X). For X: compact, we consider C(X).

C0(X) is an operator algebra, with each f ∈ C0(X) regarded as an operator Mf acting on
H = L2(X), such that Mfξ(x) = f(x)ξ(x).

C0(X) is actually a (commutative) C∗-algebra contained in B
(
L2(X)

)
, together with

f · g(x) = f(x)g(x), f ∗(x) = f(x), ‖f‖ = ‖f‖∞ = sup
∣∣f(x)

∣∣.
i. e. It is closed under ∗, and ‖ ‖ satisfies: ‖f ∗f‖ = ‖f‖2.

Pretty much “all” the information about X can be described in terms of the C∗-algebra
language.
[Example]: For X: compact, Hausdorff, and Y : open subset in X,

C0(Y ) =
{
f ∈ C(X) : f(x) = 0, for x ∈ X \ Y

}
is a closed ideal in C(X).

Gelfand–Naimark Theorem (1940’s): Actually, any commutative C∗-algebra A can be
canonically realized as A ∼= C0(X), for some locally compact Hausdorff space X. Here,
X = sp(A) (“spectrum of A”) is the set of all complex homomorphisms π : A→ C. A very
crucial fact is that ‖f ∗f‖ = ‖f‖2.

This means that Category of locally compact Hausdorff spaces and Category of commutative
C∗-algebras are equivalent. In this sense, working with general (possibly non-commutative)
C∗-algebras will be the study of non-commutative topology/geometry .

In short, C∗-algebras are considered as “non-commutative spaces”.

Similarly, we may consider a weak closure (i. e. von Neumann algebra), and talk about
non-commutative measure theory .
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Chapter 1

Deformation quantization and
noncommutative manifolds

1.1 Quantum plane

Traditionally, a quantum mechanical system is modeled using a Hilbert space formalism, as-
sociating self-adjoint (possibly unbounded) operators to physical observables. And, the pure
quantum states are “rays” in the Hilbert space. The “non-simultaneous observability” of two
observables (or, Heisenberg’s uncertainty principle) corresponds to the non-commutativity
of the corresponding operators.

[Example] (Schrödinger representation): Let H = L2(R). Define

• [The position operator]: Q ∈ L(H), where

Qξ(x) = xξ(x).

• [The momemtum operator]: P ∈ L(H), where

Pξ(x) = i~
dξ(x)

dx
. (~: Planck constant)

• [The Hamiltonian]: H ∈ L(H), where

Hξ(x) = − ~2

2m

d2ξ(x)

dx2
+ V (x)ξ(x). (V : some potential function)

Note that QP 6= PQ. Since

PQξ(x) = i~
d

dx

(
xξ(x)

)
= i~ξ(x) + i~x

dξ(x)

dx
= (i~I +QP )ξ(x),

we have: PQ − QP = i~I. Or, [P,Q] = i~I. This is called the canonical commutation
relation (C.C.R.).
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Often, a quantum mechanical system is considered to be a quantum version of a certain
classical system (with “phase space” M , observables being functions on M). A suitable
process for associating operators (quantum observables) to functions (classical observables)
is called a quantization.

[Our problem]: We wish to know the properties a suitable quantization should satisfy.

[Motivational Example] (Case of one free particle in an n-dimensional space):
Let Rn: configuration space (“position”), with q = (q1, q2, . . . , qn) ∈ Rn.
Let R2n: state space (or phase space), with (p; q) = (p1, . . . , pn; q1, . . . , qn) ∈ R2n.
On R2n, there exists the Poisson bracket :

{f, g} :=
n∑
k=1

∂f

∂pk

∂g

∂qk
− ∂f

∂qk

∂g

∂pk
, for f, g ∈ C∞(R2n).

In particular, for the coordinate functions pj, qk, we have: {pj, qk} = δjk1.

A corresponding quantum system should have an operator associated to each function,
and in particular, should have self-adjoint operators Pj and Qk, acting on the Hilbert space
H = L2(Rn). We require that

[Pj, Pk] = [Qj, Qk] = 0, and [Pj, Qk] = δjki~I (“Heisenberg commutation relation”).

Hopefully, we can extend the correspondence pj 7→ Pj, qk 7→ Qk to C∞(R2n). But, it is not
obvious how to do this!

An answer ...
Weyl quantization (1930’s): For convenience, let n = 1. Recall that for a “reasonable”
function f on R2, for instance f ∈ S(R2), a Schwartz function, its Fourier transform can be
defined: f 7→ f∧, where

f∧(r, s) =

∫
f(p, q) exp

[
−i(r, s) · (p, q)

]
dpdq.

And, with a suitable Plancherel measure, the inverse Fourier transform can be defined:

φ∨(p, q) =

∫
φ(r, s) exp

[
i(r, s) · (p, q)

]
drds,

so that the “Fourier inversion theorem” holds. Namely, F−1
(
F(f)

)
= f . It also holds that

(f · g)∧(x, y) =

∫
f∧(r, s)g∧(x− r, y − s) drds.

Motivated by the Fourier inversion theorem, we may quantize the function f by sending
it to the operator Uf on H, defined by

Uf =

∫
f∧(r, s) exp

[
i(rP + sQ)

]
drds.

This is the “Weyl quantization”. [There are other possible prescriptions for quantization.]
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[Side remark]: A Schwartz function f ∈ S(R2) is a C∞-function such that m∂αf is bounded
for any polynomial m and a multi-index α = (α1, α2). Clearly, f ∈ C0 and f ∈ L1. The
Schwartz function space is dense in C∞ and in L1. If f ∈ S, then f∧ ∈ S, and the Fourier
inversion theorem holds. So the Fourier transform sends S onto itself.

[A Lie theory result]: By the Baker–Campbell–Hausdorff formula, it can be shown that

exp(X) exp(Y ) = exp

(
X + Y +

1

2
[X, Y ] +

1

12

[
X, [X, Y ]

]
+

1

12

[
Y, [Y,X]

]
+ · · ·

)
.

In our case, [P,Q] = i~I and I is central. So, exp(P ) exp(Q) = exp
(
P +Q+ i~

2
I
)
. It

follows that exp
[
i(rP + sQ)

]
= e

i~rs
2 exp(irP ) exp(isQ).

For the case of the Schrödinger representation, we have, for ξ ∈ L2(Rn),

exp(isQ)ξ(x) = eisxξ(x),

exp(irP )ξ(x) =

(
∞∑
k=0

[
ir(i~ d

dx
)
]k
ξ

k!

)
(x) =

∞∑
k=0

(−~r)k

k!

dkξ(x)

dxk

= (by Taylor ...) = ξ(x− ~r).

So we have: exp
[
i(rP +sQ)

]
ξ(x) = e

i~rs
2 exp(irP ) exp(isQ)ξ(x) = ei(x−~r/2)sξ(x−~r). And,

Ufξ(x) =
∫
f∧(r, s)ei(x−~r/2)sξ(x− ~r) drds.

Moyal product: We may interpret the Weyl quantization procedure as a deformation of
the algebra S(R2) ⊆ C∞(R2), via the product ×~ on it given by Uf×~g = UfUg. It turns out
that the direction of the deformation (parameter ~) is given by the Poisson bracket. Note
that

Uf×~g = UfUg =

∫
f∧(r, s)g∧(r′, s′) exp

[
i(rP + sQ)

]
exp
[
i(r′P + s′Q)

]
drdsdr′ds′

=

∫
f∧(r, s)g∧(r′, s′)e−

i~
2

(rs′−r′s) exp
[
i
(
(r + r′)P + (s+ s′)Q

)]
drdsdr′ds′

=

∫
f∧(r, s)g∧(x− r, y − s)e−

i~
2

[
r(y−s)−(x−r)s

]
exp
[
i
(
xP + yQ

)]
drdsdxdy,

so (f ×~ g)(p, q) =
∫
f∧(r, s)g∧(x− r, y − s)e−

i~
2

[
r(y−s)−(x−r)s

]
exp
[
i
(
xp+ yq

)]
drdsdxdy.

Formally, we can write:

e−
i~
2

[
r(y−s)−(x−r)s

]
= 1 +

i~
2

[
(ir)(i(y − s))− (i(x− r))(is)

]
+ (~2 . . . ).

This observation, together with the fact that (f · g)∧(x, y) =
∫
f∧(r, s)g∧(x− r, y− s) drds,

and that

(
∂f

∂p

)∧
(r, s) = f∧(r, s)(ir), . . . , it follows that:

(f ×~ g)(p, q) = (f · g)(p, q) +
i~
2
{f, g}(p, q) + (~2 . . . ).

where { , } is the Poisson bracket as defined earlier.
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All this can be carried out even in the C∗-algebra setting. Note first that S(R2), a dense
subspace of C0(R2), becomes a ∗-algebra A~, together with the product f ×~ g and the
involution f ∗ = f . Further define a norm:

‖f‖~ := sup
{
‖Uf‖ : U is a representation of the C.C.R.)

}
.

It can be shown that ‖ ‖~ is a C∗-norm: ‖f ∗ ×~ f‖~ = ‖f‖2
~. Also note that ‖f‖~ ≤ ‖f‖L1 .

So, by the Lebesgue’s dominated convergence theorem, we can show that

lim
~→0

∥∥∥∥f ×~ g − g ×~ f

~
− i{f, g}

∥∥∥∥
~

= 0.

Let us write A~ to be the C∗-algebra completion of (A~,×~,
∗), with respect to the norm

‖ ‖~. It is easy to see that A~=0 = C0(R2). Whereas the non-commutative C∗-algebra A~,
for ~ 6= 0, could be considered as a quantum plane (or a quantum phase space). It can be
further shown that A~ ∼= C0(R) oτ R ∼= K

(
L2(R)

)
. Since A~ = S(R2) may be regarded as

providing the smooth structure on A~, this example should be a non-commutative manifold .

[Remark]: Given a group G, a function ω : G×G→ T is called a “2-cocycle”, if

ω(xy, z)ω(x, y) = ω(x, yz)ω(y, z), for x, y, z ∈ G.

It is a “normalized” cocycle, if ω(eG, x) = ω(x, eG) = 1. In our case, ω : R2n×R2n → T, given
by ω

(
(r, s), (r′, s′)

)
:= exp

[
i~(r · s′ − r′ · s)/2

]
, is a normalized 2-cocycle. And, U : (r, s) 7→

Ur,s = exp
[
i(rP + sQ)

]
is a “projective unitary representation” of G = R2n for cocycle ω,

satisfying the condition that Ur,sUr′,s′ = ω
(
(r, s), (r′, s′)

)
Ur+r′,s+s′ . With the machinery of

the projective representations and the Fourier transform, we can actually generalize the Weyl
quantization to the setting of any locally compact abelian group.

1.2 Deformation quantization of Poisson manifolds

A Poisson manifold is a manifold M , equipped with a (bilinear) Poisson bracket . That is,
we have a map { , } : C∞(M)× C∞(M) → C∞(M) such that for all f, g, h ∈ C∞(M),

1. {f, g} = −{g, f}

2.
{
f, {g, h}

}
+
{
g, {h, f}

}
+
{
h, {f, g}

}
= 0 (Jacobi identity)

3. {f, gh} = {f, g}h+ g{f, h} (Leibnitz rule)

A Poisson bracket may also be described via a “Poisson bivector field”, ωM =
∑
Xi ∧ Xj,

where Xi, Xj are tangent vectors. Then we have: {f, g} =
〈
df ∧ dg, ωM

〉
. Note that for

f ∈ C∞(M), there is a “hamiltonian vector field” Xf : g 7→ {g, f}, g ∈ C∞(M).

(*) Loosely speaking, a Poisson manifold is a possible candidate to try a quantization.
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[Examples of Poisson manifolds]:

1. Trivial Poisson bracket on any M , for which {f, g} ≡ 0.

2. On M = R2n,

{f, g} =
n∑

i,j=1

(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
.

It is symplectic (non-degenerate everywhere).

3. Let g be a (finite-dimensional) Lie algebra. Consider M = g∗. Then the tangent space
of M = g∗ at any point can be canonically identified with g∗ itself. So for any ξ ∈ g

and any f ∈ C∞(g∗), we have: (df)ξ ∈ g. Considering this, define on C∞(g∗) the
following Linear (or Lie–Poisson) P.B.:

{f1, f2}lin(ξ) =
〈[

(df1)ξ, (df2)ξ
]
, ξ
〉
, ∀ξ ∈ g∗.

It is “linear”, in the sense that the Poisson bracket of linear functions is a linear map.
Clearly, this one is not symplectic. All linear Poisson brackets are obtained in this way.

Deformation quantization of
(
C∞(M), { , }

)
is to find on C∞(M) a deformed product,

×~, such that the direction of the deformation is given by the Poisson bracket. That is,

f ×~ g − g ×~ f

~
−→ i{f, g}, as ~ → 0.

Deformation quantization is usually carried out in terms of formal power series in ~, via the
“star product” (Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer).

If the Poisson bracket on M comes from a symplectic structure, a deformation quantiza-
tion exists (De Wilde, Lecompte), while the case of a general Poisson manifold was considered
by Kontsevich. Both are in the formal power series setting. However, it is not known if this
can be generalized to the C∗-algebra framework.

Strict deformation quantization (Rieffel, 1990’s): Given a Poisson manifold M , by a
“strict deformation quantization” we mean a dense ∗-subalgebra A of C0(M) on which { , }
is defined, together with a family

(
×~,

∗~ , ‖ ‖~
)

of C∗-algebra structures for ~ ∈ (some interval
of R containing 0), such that

1. The completed C∗-algebras A~ = (A,×~, ∗~)
‖ ‖~

form a continuous field of C∗-algebras;

2. For ~ = 0, we have: A~=0
∼= C0(M);

3. We have the “correspondence relation”: lim~→0

∥∥∥∥f ×~ g − g ×~ f

~
− i{f, g}

∥∥∥∥
~

= 0.

(*) Clearly, the quantum plane earlier is an example of a strict deformation quantization.
There are other examples, some of which will appear in § 1.3 below. However, it turns out
that this notion needs to be weakened a little, to allow for some other cases (More on this
matter in Chapter 3.).
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1.3 Some examples of non-commutative manifolds

(1). Quantum plane: Seen in § 1.1.

(2). Quantum torus: Let Θ = (θjk) be a fixed n× n skew matrix (i. e. θjk = −θkj).
On C∞(Tn), define the Poisson bracket:

{f, g} :=
1

π

∑
j,k

θjk
∂f

∂xj

∂g

∂xk
.

Write e(t) = e2πit, and let λjk = e(2θjk). We wish to consider the universal C∗-algebra
AΘ generated by the unitary operators U1, . . . , Un, such that UkUj = λjkUjUk, for j < k.
So for any p = (p1, . . . , pn) ∈ Zn, let Up = Up1

1 · · ·Upn
n . Define also ω(p, q) = e(Θp · q). We

will require that UpUq = ω(p, q)Up+q. Since Uej
= Uj and Uek

= Uk, this is consistent with

UkUj = e(θjk)Uek+ej
= e(θjk)ē(θkj)UjUk =

(
e(θjk)

)2
UjUk, or UkUj = λjkUjUk. Using the

terminology that appeared earlier, we see that U is a projective unitary representation of
G = Zn, for the cocycle ω.

As before, we may define a product and an involution on a dense subspace of C0(Zn).
That is, for φ, ψ ∈ S(Zn), define:

(φ ∗ω ψ)(p) =
∑
q∈Zn

φ(q)ψ(p− q)ω(q, p− q), and φ∗(p) = φ(−p).

This makes S(Zn) a ∗-algebra. Noting that the abelian groups Zn and Tn are in Pontryagin
duality and using the Fourier transform, we know that S(Zn) ∼= S(Tn). The ∗-algebra
structure above can carry over to S(Tn), by f ×Θ g = (f∧ ∗ω g∧)∨.

Any ω-projective representation U of Zn provides a ∗-representation of S(Tn), via f 7→ Uf ,
where Uf :=

∑
p∈Zn f∧(p)Up. So we can define a C∗-norm on S(Tn) as follows:

‖f‖C∗ = sup
{
‖Uf‖ : U a ω-projective representation of Zn

}
.

Clearly, ‖f‖C∗ ≤ ‖f∧‖1. Define AΘ as the C∗-completion
(
S(Tn),×Θ, ∗

)‖ ‖C∗
. When Θ ≡ 0

(so ω ≡ 1), we have: A0
∼= C(Tn). In this sense, we may regard AΘ as a quantum torus .

Meanwhile, the C∗-algebras A~Θ forms a continuous field of C∗-algebras as ~ varies.
Moreover, it is not difficult to show that

lim
~→0

∥∥∥∥f ×~Θ g − g ×~Θ g

~
− i{f, g}

∥∥∥∥
~Θ

= 0.

To prove the result, first show the pointwise convergence, using the fact that

(
∂f

∂xj

)∧
(p) =

f∧(p)(2πipj), . . . , and the definition of the Poisson bracket. Then we obtain the L1-
convergence by the Lebesgue’s dominated convergence theorem. Since all the C∗-norms are
bounded above by the L1-norm, we obtain the result. What all this means is that the A~Θ,
as ~ varies, provides a strict deformation quantization of the Poisson manifold

(
Tn, { , }

)
.
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[Remark]: The quantum torus is among the more successful examples of non-commutative
manifolds. Together with a suitable “Dirac operator”, one can form a “spectral triple”,
giving us an example in noncommutative differential geometry (in the sense of Connes). A
metric, and the notions like Chern character, Yang–Mills action, . . . can be considered.

(3). Quantization of the linear (Lie–Poisson type) Poisson bracket (Rieffel):
Recall the linear Poisson bracket on the dual vector space g∗ of a Lie algebra g. For our

purposes, we will assume that g is a nilpotent or exponential Lie algebra, so by the expo-
nential map we can regard g ∼= G, where G denotes the (connected and simply connected)
Lie group corresponding to g.

For the deformation parameter ~, define a Lie bracket [ , ]~ on g by [X, Y ]~ := 1
~ [~X, ~Y ].

The Lie group corresponding to g~ :=
(
g, [ , ]~

)
is denoted by G~, and clearly, g~ ∼= G~ as

spaces. For ~ = 0, we will have G~=0 abelian, and we may regard G~=0 = (g,+). Then at
the level of Schwartz functions, we have:

S(g∗) ∼= S(g) = S(g~) ∼= S(G~),

where the first ∼= is via the Fourier transform and the last one is due to g~ ∼= G~. On S(G~),
we can define the convolution product, ∗~, inherited from L1(G~). Unless G~ is abelian, the
convolution product is noncommutative.

This means that on the dense subspace A := S(g∗) of C0(g
∗), we can define a family of

products ×~, by f ×~ g := (f∧ ∗~ g
∧)∨. Similarly, we can define a family of involutions ∗~ ,

also inherited from L1(G~). It is not difficult to see that when ~ = 0, the product and the
involution are just the pointwise multiplication and the complex conjugation on A ⊆ C0(g

∗).
Write A~ := (A,×~,

∗~). For each ∗-algebra A~, we can give it a C∗-norm ‖ ‖~, inherited
from the enveloping C∗-algebra of L1(G~). Denote by A~ the C∗-completion of A~ with
respect to ‖ ‖~. In this way, we obtain a continuous field of C∗-algebras {A~}. Note that
A~=0

∼= C0(g
∗), with its natural commutative C∗-algebra structure. And, A~ ∼= C∗(G~). By

using a similar reasoning as in cases (1) and (2), we can also show that

lim
~→0

∥∥∥∥f ×~ g − g ×~ f

~
− i

2π
{f, g}lin

∥∥∥∥
~

= 0,

for f, g ∈ A. This means that the {A~}~∈R provides a strict deformation quantization of the
Poisson manifold (g∗, 1

2π
{ , }lin).

(4). Quantization of certain non-linear Poisson bracket (Kahng):
We may generalize the case (3) to a certain class of non-linear Poisson brackets, in the

form of { , }lin+ (some cocycle term). See below.
Let h be a Lie algebra with center z, and let h∗ denote the dual vector space of h. Consider

the vector space V = C∞(h∗/z⊥)
(
⊆ C∞(h∗)

)
, and give it the trivial U(h)-module structure.

Let Ω be a Lie algebra 2-cocycle for h having values in V , satisfying the centrality condition:
That is, Ω is a skew-symmetric bilinear map from h× h into V such that

Ω
(
X1, [X2, X3]

)
+ Ω

(
X2, [X3, X1]

)
+ Ω

(
X3, [X1, X2]

)
= 0, X1, X2, X3 ∈ h,

and for Z ∈ z, we have Ω(Z,X) = Ω(X,Z) = 0 for any X ∈ h.

9



Then we may regard h + V as a Lie algebra, with the bracket on it given by

[X + v, Y + w]h+V = [X, Y ] + Ω(X, Y ), X, Y ∈ h, v, w ∈ V.

Motivated by this, define a Poisson bracket { , }Ω : C∞(h∗)×C∞(h∗) → C∞(h∗), as follows:

{f, g}Ω(µ) :=
〈[

(df)µ, (dg)µ
]
, µ
〉

+ Ω
(
(df)µ, (dg)µ;µ

)
, for µ ∈ h∗.

Note that if we denote (df)µ and (dg)µ by X and Y , as considered as elements in h, the
right hand side is just the evaluation, at µ ∈ h∗, of [X, Y ] + Ω(X, Y ) ∈ h + V ⊆ C∞(h∗),
which is none other than the Lie bracket on h + V above. Using the property of the Lie
bracket and the cocycle identity of Ω, as well as the fact that (dχ)µ ∈ z for χ ∈ V , we can
show that { , }Ω is indeed a Poisson bracket on on h∗. We may regard this (non-linear)
Poisson bracket as a “cocycle perturbation” of { , }lin on h∗. This definition generalizes the
notion of an “affine Poisson bracket”, where Ω is a scalar-valued cocycle.

It turns out that the Poisson bracket { , }Ω above can be viewed as a “central extension”
of the linear Poisson bracket on the space (h/z)∗. This actually follows from the fact that
the Lie bracket [ , ]h+V earlier can be transferred to a Lie bracket on h/z⊕ V . We will skip
the details.

Suppose, from now on, that h is nilpotent, and consider the non-linear Poisson bracket
{ , }Ω on h∗. (Some generalization is possible, but needs a more relaxed version of the
deformation quantization framework.) As noted above, we may as well regard { , }Ω as a
central extension of the linear Poisson bracket on (h/z)∗. Let K = H/Z be the Lie group
corresponding to h/z, and as before, consider groups K~, ~ ∈ R, corresponding to the Lie
bracket (x, y) 7→ 1

~ [~x, ~y] on h/z.
Fix ~ ∈ R. From the Ω information, it is possible to construct a continuous field σ~ :

h∗/z⊥ 3 r 7→ σr~, where each σr~ : K~ × K~ → T is a group 2-cocycle. Define the twisted
crossed product C∗-algebras A~ = C∗(K~, C0(h

∗/z⊥), σ~
)
. It can be shown that the {A~}~∈R

provides a strict deformation quantization of the Poisson manifold
(
h∗, 1

2π
{ , }Ω

)
.

Sketch of Proof. For f, g ∈ C∞
c (K~; h

∗/z⊥), define the twisted convolution product, ∗~, by

(f ∗~ g)(x; r) =

∫
f(z; r)g(z−1 ·~ x; r)σr~(z, z−1 ·~ x) dx,

where ·~ denotes the multiplication on the group K~. Consider also the involution, given
by f ∗(x; r) = f(x−1; r)σr~(x, x

−1)∆K~(x
−1). Viewing the ∗-algebra C∞

c (K~; h
∗/z⊥) as a sub-

algebra of the L1-algebra L1
(
K~, C0(h

∗/z⊥)
)
, and by considering its enveloping C∗-algebra,

we obtain the C∗-algebra A~. Since the groups K~ here are amenable (being nilpotent),
we have no distinction between the “full” and the “reduced” versions of the twisted crossed
product C∗-algebras. Therefore, by a result of Rieffel, it turns out that the {A~}~∈R forms
a continuous field of C∗-algebras.

By the partial Fourier transform, the twisted convolution products ∗~ can be transferred
to the deformed products ×~ on a dense subspace A of C0(h

∗). The C∗-algebras A~ may be

10



regarded as the completions of the (A,×~). When ~ = 0, the group K~=0 is isomorphic to an
additive abelian group (h/z,+), and σ~ ≡ 1, thereby giving us A~=0

∼= C∗(h/z, C0(h
∗/z⊥)

) ∼=
C∗(h,+) ∼= C0(h

∗). Finally, we can also verify the correspondence relation, first by showing
the pointwise convergence, then by utilizing the Lebesgue dominated convergence theorem
and the fact that the C∗-norms are dominated by the L1-norm.

[Remark]: This class of Poisson brackets is fairly general as is, but by developing a weaker
notion of the deformation quantization framework, we may be able to further generalize the
situation, for instance by incorporating some actions as well as the cocycles. Meanwhile, we
may also introduce some groupoid algebra notions. See Chapter 3 for further discussion on
these matters.

[Remark]: Using this deformation quantization framework for the case of certain Poisson–Lie
groups having non-linear Poisson structure of the above type, the author could construct
some examples of locally compact quantum groups, in the C∗-algebra framework.

1.4 Poisson–Lie groups

We are in particular interested in constructing quantum groups (more on quantum groups
later, in Chapter 2). One possible approach is by deformation quantization of ordinary
groups. For this, we need to begin with a Poisson–Lie group, which is a Lie group whose
underlying manifold is a Poisson manifold equipped with a Poisson bracket compatible with
the group structure.

[Some preliminaries]: (1). Given two Poisson manifoldsM andN , a smooth map Φ : M → N
is called a “Poisson map”, if

{f1, f2}N ◦ Φ = {f1 ◦ Φ, f2 ◦ Φ}M
for all f1, f2 ∈ C∞(N).
(2). If M and N are Poisson manifolds, the product manifold M ×N is a Poisson manifold,
equipped with the “product Poisson structure”, given by

{f1, f2}M×N(x, y) =
{
f1(x, ), f2(x, )

}
N

(y) +
{
f1( , y), f2( , y)

}
M

(x).

[Definition]: A Lie group G (itself a manifold) is a Poisson–Lie group, if it is equipped
with a Poisson bracket { , } on C∞(G) such that the multiplication map µ : G × G → G,
µ(x, y) = xy, of G is a Poisson map, where G×G is given the product Poisson structure.

(*) However, the inversion map ι : x 7→ x−1 is in general not a Poisson map. Neither for the
left translations and right translations.

Remembering the product structure, the compatibility condition becomes:

{f1, f2}(xy) = {f1 ◦ Lx, f2 ◦ Lx}(y) + {f1 ◦Ry, f2 ◦Ry}(x),
for f1, f2 ∈ C∞(G) and x, y ∈ G.

11



Let G be a Poisson–Lie group. Then it turns out that its Lie algebra g(= TeG) has a natural
Lie bialgebra structure, via a certain cobracket δ : g → g ⊗ g. It also turns out that g∗ is
itself a Lie algebra. In fact, for ξ1, ξ2 ∈ g∗, find f1, f2 ∈ C∞(G) such that ξi = (dfi)e. Then:

[ξ1, ξ2]g∗ :=
(
d{f1, f2}

)
e
.

It is well-defined. That is, [ξ1, ξ2]g∗ does not depend on the choice of f1 and f2. Actually,

[ξ1, ξ2]g∗(X) =
〈
δ(X), ξ1 ⊗ ξ2

〉
=
〈
X, δ∗(ξ1 ⊗ ξ2)

〉
, for X ∈ g.

Let us try to be a little more precise ...

Given the Poisson bracket { , } on C∞(G), recall that we have the (skew-symmetric) Poisson
bivector ω : x 7→ ωx ∈ TxG⊗ TxG such that

{f1, f2}(x) =
〈
ωx, (df1)x ⊗ (df2)x

〉
.

From the compatibility condition of the Poisson bracket, we have:〈
ωxy, (df1)xy ⊗ (df2)xy

〉
=
〈
ωy, d(f1 ◦ Lx)y ⊗ d(f2 ◦ Lx)y

〉
+
〈
ωx, d(f1 ◦Ry)x ⊗ d(f2 ◦Ry)x

〉
.

By chain rule, d(f1 ◦ Lx)y = (df1)xy · (Lx)′y, etc., It follows that

ωxy =
(
(Lx)

′
y ⊗ (Lx)

′
y

)
(ωy) +

(
(Ry)

′
x ⊗ (Ry)

′
x

)
(ωx).

Meanwhile, we may define ωR : G→ g⊗ g, by bringing back (via the right translation) the
Poisson bivector ω of G to e ∈ G. We then have:

ωR(xy) = (Adx⊗Adx)ω
R(y) + ωR(x).

This means that ωR is a 1-cocycle of G having values in g ⊗ g, where G acts on g ⊗ g by
Ad-representation. [c. f. Φ : G→ A such that Φ(xy) = Φ(x) + x.Φ(y).]

From ωR : G → g ⊗ g, obtain: δ = (dωR)e : g → g ⊗ g. Since ωR is a 1-cocycle for
the Ad-representation of G on g ⊗ g, it follows that δ is a (Lie algebra) 1-cocycle for the
ad-representation of g on g⊗ g. That is,

δ
(
[X, Y ]

)
= X.δ(Y )− Y.δ(X) = (adX ⊗1 + 1⊗ adX)δ(Y )− (adY ⊗1 + 1⊗ adY )δ(X).

Moreover, by construction, we have:

[ξ1, ξ2]g∗(X) =
(
d{f1, f2}

)
e
(X) =

〈
(dωR)e(X), (df1)e ⊗ (df2)e

〉
=
〈
δ(X), ξ1 ⊗ ξ2

〉
.

[Definition]: Let g be a Lie algebra. A Lie bialgebra structure on g is a skew-symmetric
linear map (the “cobracket”) δ : g → g⊗ g such that

• On g∗, the dual map δ∗ : g∗ ⊗ g∗ → g∗ determines a Lie bracket.

• δ is a (Lie algebra) 1-cocycle for the ad-representation of g on g⊗ g.

[Fact]: If G is a Poisson–Lie group, then its Lie algebra g has a natural Lie bialgebra
structure. Conversely, if G is connected and simply connected, every Lie bialgebra structure
on g determines a unique Poisson structure on G, making it into a Poisson–Lie group.
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(*) Therefore, to obtain a Poisson–Lie group, we may look for a Lie algebra equipped with
a suitable cobracket!

[Remark]: If (g, δ) is a Lie bialebra, then (g∗, θ) is also a Lie bialgebra, where θ∗ : g⊗ g → g

is the Lie bracket on g. Similarly, at the group level, if
(
G, { , }G

)
is a Poisson–Lie group,

we can consider its dual Poisson–Lie group
(
G∗, { , }G∗

)
corresponding to the Lie bialgebra

(g∗, θ).

Among the 1-cocycles for g are 1-coboundaries, in the form of

δ(X) = X.(r) = (adX ⊗1 + 1⊗ adX)(r),

for some r ∈ g ⊗ g. For such a δ to determine a Lie bialgebra structure on g (obtaining a
“coboundary Lie bialgebra”), we need:

• r12 + r21 is g-invariant (i. e. X.(r12 + r21) = 0, for all X ∈ g).

•
[
r12, r13

]
+
[
r12, r23

]
+
[
r13, r23

]
is g-invariant.

Here, for r =
∑

i(ai⊗ bi), we mean: r21 =
∑

i bi⊗ai, and
[
r13, r23

]
=
∑

i,j ai⊗aj⊗ [bi, bj], ...

In particular, we would obtain a Lie bialgebra structure on g if we can find r ∈ g⊗g such that
r12 + r21 is g-invariant and satisfies the so-called “Classical Yang–Baxter equation (CYBE)”:[

r12, r13

]
+
[
r12, r23

]
+
[
r13, r23

]
= 0.

If so, the resulting Lie bialgebra is quasitriangular . If, in addition, r12 + r21 = 0 (i. e. r is
skew-symmetric), then we have a triangular Lie bialgebra.

[Some examples]: Let h be the (2n + 1)-dimensional Heisenberg Lie algebra, with basis
vectors xi, yi (i = 1, . . . , n), z, satisfying the following relations:

[xi,yj] = δijz, [xi,xj] = [yi,yj] = [z,xi] = [z,yi] = 0.

Writing x = x1x1 + · · ·+ xnxn, etc., we have:
[
(x, y, z), (x′, y′, z′)

]
h

= (0, 0, x · y′− x′ · y), for

x, y ∈ Rn and z ∈ R. Consider also d such that

[d,xi] = xi, [d,yi] = −yi, [d, z] = 0.

Then h̃ = span
(
xi,yi(i = 1, . . . , n), z,d

)
is the extended Heisenberg Lie algebra.

We have the following examples of classical r-matrices, giving us different Lie bialgebra
structures on h.

1. Let r = λ(z⊗ d− d⊗ z), λ 6= 0. It determines a “triangular” Lie bialgebra structure
on h̃. Restricted to h, we have the following cobracket δ1 : h → h ∧ h.

δ1(xj) = λxj ∧ z, δ1(yj) = −λyj ∧ z, δ1(z) = 0.
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2. Let r = 2λ
(∑n

i=1(xi⊗yi)+
1
2
(z⊗d+d⊗z)

)
, λ 6= 0. It determines a “quasitriangular” Lie

bialgebra structure on h̃. Restricted to h, we have the following cobracket δ2 : h → h∧h.

δ2(xj) = λxj ∧ z, δ2(yj) = λyj ∧ z, δ2(z) = 0.

3. Let r =
∑n

i,j=1 Jijxj ⊗ xi, where (Jij) is skew, n × n matrix (n ≥ 2). It determines a
“triangular” Lie bialgebra structure on h, given by the following cobracket δ3 : h →
h ∧ h.

δ3(xj) = 0, δ3(yj) =
n∑
i=1

Jijxi ∧ z, δ3(z) = 0.

[Remark]: Corresponding to each of these Lie bialgebra structures (h, δ), we can find the
Poisson–Lie group H, the dual Lie bialgebra (g = h∗, θ), and the dual Poisson–Lie group G.
It turns out that Case (1) gives a linear Poisson bracket on G, while Case (2) and (3) give
rise to non-linear Poisson brackets on G, of our “cocycle perturbation” type. See below:

1. The Poisson bracket on C∞(h∗) dual to (h, δ1) is:

{φ, ψ}(p, q, r) = r(x · y′ − x′ · y),

for φ, ψ ∈ C∞(G). Here dφ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′), which are
naturally considered as elements of h.

2. The Poisson bracket on C∞(h∗) dual to (h, δ2) is:

{φ, ψ}(p, q, r) =

(
e2λr − 1

2λ

)
(x · y′ − x′ · y), for φ, ψ ∈ C∞(G).

Again, dφ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′), as elements of h.

3. The Poisson bracket on C∞(h∗) dual to (h, δ3) is:

{φ, ψ}(p, q, r) = r(x · y′ − x′ · y) +
r2

2

n∑
k,j=1

Jkj(yjy
′
k − yky

′
j), for φ, ψ ∈ C∞(G).

Again, dφ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′), as elements of h.

Therefore, as we have seen in §1.3 (3), (4), we can use the framework of twisted crossed
product C∗-algebras to carry out the deformation quantization of these Poisson structures.
Since the underlying Poisson manifold is actually a group, it is possible (though non-trivial)
to construct suitable extra structure maps (including the comultiplication map) on the C∗-
algebra, to obtain an example of a (C∗-algebraic) locally compact quantum group,
which may be considered as a “quantized C0(G)”.

(*). The category of quantum groups is large, and it contains more examples than those ob-
tained as deformations of Poisson–Lie groups. A more careful discussion on locally compact
quantum groups is given in Chapter 2 below.
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Chapter 2

Locally compact quantum groups

Loosely speaking, the category of quantum groups is a generalized notion that contains the
ordinary groups as special cases. Properly defining it is difficult, but let us begin with the
notion of a Hopf algebra.

2.1 Hopf algebras

The theory of Hopf algebras is purely algebraic, so the tensor products ⊗ in this section will
be all algebraic. See standard references (Abe, Sweedler).

A Hopf algebra (over C) is a pair (A,∆), where A is an algebra over C with identity,
and ∆ : A → A ⊗ A is a unital homomorphism (called the comultiplication) satisfying the
“coassociativity” condition: (∆ ⊗ id)∆ = (id⊗∆)∆, such that there exists a linear map
S : A→ A and a linear map ε : A→ C, satisfying

(ε⊗ id)∆(x) = x = (id⊗ε)∆(x), and m
(
(S ⊗ id)∆(x)

)
= ε(x)1 = m

(
(id⊗S)∆(x)

)
,

or,

A

∆
��

id // A

∼=
��

A⊗ A
ε⊗id

// C⊗ A

A

∆
��

id // A

∼=
��

A⊗ A
id⊗ε

// A⊗ C

and A

∆
��

id ◦ε // A A
id ◦εoo

∆
��

A⊗ A
S⊗id

// A⊗ A

m

OO

A⊗ A
id⊗S
oo

Here : A⊗A→ A is the multiplication mapm(a⊗b) = ab for all a, b ∈ A. Whenever (A,∆) is
a Hopf algebra, the maps S and ε are uniquely determined. We call S the antipode and ε the
counit of (A,∆). We have that S is an anti-homomorphism and that ε is a homomorphism.

(EX 1.) To see that the Hopf algebras could be considered as generalizations of ordinary
groups, consider a finite group G. Let K(G) denote the set of all complex functions on
G. Here, define ∆ : K(G) → K(G) ⊗ K(G) = K(G × G) by (∆(f))(s, t) = f(st). Then
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we have the coassociativity condition:
(
(∆ ⊗ id)∆(f)

)
(r, s, t) = f

(
(rs)t

)
= f

(
r(st)

)
=(

(id⊗∆)∆(f)
)
(r, s, t). We can see that (

(
K(G),∆

)
is a Hopf algebra, together with the

maps
(
S(f)

)
(t) := f(t−1) and ε(f) := f(eG).

(EX 2.) Consider also the group algebra CG, which is a linear span of the elements {λt :
t ∈ G} and has a multiplication given by λsλt = λst. On this algebra, we can define the
comultiplcation map ∆̂ by ∆̂(

∑
t ctλt) =

∑
t ctλt ⊗ λt. Then

(
CG, ∆̂

)
is a Hopf algebra,

together with the maps S(
∑

t ctλt) =
∑

t ctλt−1 and ε(λt) = 1 for t ∈ G. In fact, these two
examples are dual objects in the category of Hopf algebras.

[Remark]: The above examples suggest that Hopf algebras could be considered as quantum
groups. There are some drawbacks, however. For one thing, there is no notion of topology nor
the notion of the Haar measure. So we cannot do much of harmonic analysis. When we wish
to consider analogues of non-compact groups or infinite-dimensional group representations,
working with the Hopf algebras will be problematic. In addition, when a Hopf algebra is
infinite dimensional, it is not possible in general to construct a dual Hopf algebra. The
general theory of locally compact quantum groups was developed to resolve these issues.

2.2 Toward topological quantum groups

A topological group is a topological space that is a group. We further require that the group
operations are continuous. In particular, if the underlying space is locally compact, we have
a locally compact group (e. g. Lie group). We wish to find a suitable generalization, both
algebraically and spatially. In this sense, our notion of a “locally compact quantum group”
would be different, though related, from the more algebraic notions like the “quantized
universal enveloping (QUE) algebras (by Drinfeld, Jimbo, ...).

Considering the paradigm of non-commutative geometry that the C∗-algebras are quantum
spaces and the fact that the maps ∆, S, ε in a Hopf algebra are analogues of the group
multiplication, inverse, identity, respectively, a natural approach would be to begin with the
C∗-bialgebra (A,∆), where A is a C∗-algebra and ∆ is a (non-degenerate) ∗-homomorphism
satisfying the coassociativity condition. One would then try to define a locally compact
quantum group by giving an appropriate definition for S and ε. However, these approaches
have all failed, for several reasons.

Among the most important reasons is that there have been some examples found (like the
“quantum SU(2) group” or the “quantum E(2) group” by Woronowicz), in which the maps
S and ε are unbounded. Then it is difficult to make sense of the expressions like ε ⊗ id or
S ⊗ id that appear in the definition of a Hopf algebra. In addition, since the C∗-algebra
A can be infinite-dimensional, the multiplication map m can be unbounded. What all this
means is that we have a difficulty defining expressions like S ⊗ id, and we are not able to
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define m on large enough domains. So we would have a serious difficulty to give a meaning
to an axiom like m

(
(S ⊗ id)∆(x)

)
= ε(x)1 for all x ∈ A.

In the finite-dimensional case, though, we do not have these technical issues. Consider as
before a finite group G and K(G) the set of all complex functions on G. Then A = K(G) is
a commutative Hopf algebra. It is also a Hopf ∗-algebra, which means that A is a ∗-algebra
(with the complex conjugation as the involution) and the map ∆ is a ∗-homomorphism. As
a consequence, the map ε is also a ∗-homomorphism. For the map S, while not necessarily
a ∗-map, it is anti-multiplicative and S

(
S(a∗)∗

)
= a for a ∈ A.

In general, if (A,∆) is a Hopf ∗-algebra, we also have the two linear maps T1 and T2 from
A⊗ A into itself, defined by

T1(a⊗ b) = (∆a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)(∆b).

They are in fact linear isomorphisms, with T−1
1 (a⊗b) =

(
(id⊗S)(∆a)

)
(1⊗b) and T−1

2 (a⊗b) =
(a ⊗ 1)

(
(S ⊗ id)(∆b)

)
. For the case of A = K(G), these maps correspond to the bijections

(s, t) 7→ (st, t) and (s, t) 7→ (s, st), and therefore manifest the left/right cancellation proper-
ties of the group.

Meanwhile, together with the sup norm, A = K(G) is actually a finite-dimensional C∗-
algebra. In fact, every (finite-dimensional) Hopf ∗-algebra (A,∆) with A a commutative
C∗-algebra is isomorphic to

(
K(G),∆

)
for some finite group G. The space G = sp(A)

is obtained by the Gelfand-Naimark theorem, and the group structure on G is obtained
by the Hopf algebra structure. For instance, for λ, µ ∈ G, the characters on A, define:
λ · µ := (λ⊗ µ)∆. This observation suggests the following definition:

[Definition]: A Hopf ∗-algebra (A,∆) is a finite quantum group, if A is a finite-dimensional
C∗-algebra. Or, equivalently, we have: a∗a = 0 if and only if a = 0.

(*) There are examples of (non-commutative and non-cocommutative) Hopf algebras which
are not finite quantum groups (because no suitable ∗-structures can be given).

Let us return to developing the definition of general locally compact quantum groups. Here
are two fundamental examples:

(1). A = C0(G), for G: locally compact group. It is a commutative C∗-algebra, together
with ∆ : A→M(A⊗ A), a non-degenerate ∗-homomorphism

C0(G) 3 f 7→ ∆f ∈ Cb(G×G), where ∆f(s, t) = f(st).

Note that the “coassociativity” holds: (∆⊗ id)∆ = (id⊗∆)∆.

ε : A→ C, a ∗-homomorphism C0(G) 3 f 7→ f(1) ∈ C.

S : A→ A, an (anti)-automorphism
(
S(f)

)
(t) = f(t−1).

[Remark]: Consider W ∈ B
(
L2(G×G)

)
, defined by Wξ(s, t) := ξ(s, s−1t). Then:

W ∗(1⊗Mf )Wξ(s, t) = (1⊗Mf )Wξ(s, st) = f(st)Wξ(s, st) = f(st)ξ(s, t)

17



We can see that: W ∗(1 ⊗Mf )W = (M ⊗M)∆f . This operator W is a so-called “multi-
plicative unitary operator”, in the sense of Baaj and Skandalis.

(2) Â = C∗
red(G), for G: locally compact group. It is a C∗-algebra defined as C∗

red(G) =

L
(
Cc(G)

)‖ ‖op
, where L is the (left regular) representation over L2(G) given by

Lfξ(t) =

∫
f(z)Lzξ(t) dz =

∫
f(z)ξ(z−1t) dz.

It has
∆̂f ∈M(Â⊗ Â) given by ∆̂f =

∫
f(z)Lz ⊗ Lz dz. (So it is “cocommutative”.)

ε̂ : Â→ C given by ε̂(f) =
∫
f(s) ds.

Ŝ : Â→ Â given by Ŝ(f) =
∫
f(z)Lz−1 dz.

As before, consider W ∈ B
(
L2(G×G)

)
, defined by Wξ(s, t) := ξ(s, st). Then:

W (Lf⊗1)W ∗ξ(s, t) = (Lf⊗1)W ∗ξ(s, s−1t) =

∫
f(z)W ∗ξ(z−1s, s−1t) dz =

∫
f(z)ξ(z−1s, z−1t) dz.

We can see that: W (Lf ⊗ 1)W ∗ = ∆̂f .

In addition to these fundamental examples, valid non-commutative, non-cocommutative ex-
amples do exist! However, as we noted earlier, some technical obstacles occur (involving ε,
S, m, ...) when we try to formulate the definition of a “locally compact quantum group”.

[Remedy]: A strategy is to work with the cancellation property of a group, and the property
that there exists an (invariant) Haar measure on a locally compact group.

[A side remark]: If a set is equipped with only an associative multiplication, it is called a
“semigroup”. It is known that a semigoup G is in fact a group if and only if for any s ∈ G,
the maps x 7→ sx and y 7→ ys are 1-1 and onto, as maps from G to G. (These are the left
and right cancellation properties.)

The density conditions in the definition of a compact quantum group given below are moti-
vated by the cancellation properties.

[Definition (Woronowicz)]: Let A be a unital C∗-algebra, and let ∆ : A→ A⊗A be a unital
∗-homomorphism saisfying (∆ ⊗ id)∆ = (id⊗∆)∆. Then (A,∆) is a compact quantum
group, if ∆(A)(A⊗ 1) and ∆(A)(1⊗ A) are dense subspaces of A⊗ A.

[Remark]: We will skip the details, but it turns out that the definition given above is a
valid one. Being a unital C∗-algebra implies compactness. For every compact group G,
earlier example

(
C(G),∆

)
is a compact quantum group. And for every discrete group Γ,

the example
(
C∗

red(Γ), ∆̂
)

earlier is a compact quantum group, similar for C∗(Γ).
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From the axioms above, one can define the antipode map S. Also, the existence of a unique,
(left/right invariant) Haar state ϕ can be proved (Woronowicz, Van Daele). Here, ϕ : A→ C
is a state satisfying the following condition:

(id⊗ϕ)∆(a) = ϕ(a)1 = (ϕ⊗ id)∆(a).

We will give some examples and discuss a little about compact quantum groups in the next
section (§ 2.3). Meanwhile, we point out that if we were to consider non-compact quantum
groups (when A is non-unital), there are some further technical issues such that the existence
of left/right invariant Haar weights needs to be required as part of the axiom. More on this
later, in § 2.4.

2.3 Compact quantum groups

The first significant example of a compact quantum group was Woronowicz’s quantum SU(2)
group, SUµ(2). (There is also an approach given by Soibelman and Vaksman, viewed as the
dual of the QUE algebra Uq(su2), but we will just consider here the C∗-algebra approach by
Woronowicz.) It is constructed by the method of generators and relations, as follows.

(1). Compact quantum group SUµ(2):

Recall that the compact Lie group SU2(C) consists of all matrices of the form

(
α −γ̄
γ ᾱ

)
,

where α, γ ∈ C and αᾱ + γ̄γ = 1. Consider the coordinate functions a, c ∈ C
(
SU2(C)

)
defined by a :

(
α −γ̄
γ ᾱ

)
7→ α and c :

(
α −γ̄
γ ᾱ

)
7→ γ. Then it is not difficult to see that

as a C∗-algebra, C
(
SU2(C)

)
is isomorphic to the universal unital commutative C∗-algebra

generated by elements a, c satisfying a∗a+ c∗c = 1.
Now fix µ ∈ [−1, 1]. Then denote by SUµ(2) the universal unital C∗-algebra generated

by elements a, c under the condition that the following matrix is unitary:

u :=

(
a −µc∗
c a∗

)
Or, equivalently, the generators a and c satisfy

c∗c = cc∗, ac = µca, ac∗ = µc∗a, a∗a+ c∗c = 1, aa∗ + µ2c∗c = 1.

Clearly, if µ = 1, we have: SUµ=1(2) ∼= C
(
SU2(C)

)
.

For each µ ∈ (0, 1], define the ∗-homomorphism ∆ : SUµ(2) → SUµ(2)⊗ SUµ(2), by

∆(a) = a⊗ a− µc∗ ⊗ c, ∆(c) = c⊗ a+ a∗ ⊗ c.

It turns out that
(
SUµ(2),∆

)
is a compact quantum group. The ∗-subalgebra A generated by

a and c is dense in SUµ(2), and more or less can be considered as set of “smooth functions”.
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The antipode map S is not defined everywhere on SUµ(2), but is defined on the dense
subalgebra A, as follows:

S(a) = a∗, S(a∗) = a, S(c) = −µc, S(c∗) = −µ−1c∗.

While S2 6≡ Id, we see that S
(
S(x∗)∗

)
= x for all x ∈ A. There also exists a unique Haar

state on
(
SUµ(2),∆

)
, satisfying the left/right invariance condition.

(2). Compact matrix quantum groups (Woronowicz):
The compact quantum group SUµ(2) appeared earlier, but it is a special case of a compact

matrix quantum group (see below). But first, let us clarify some notation: If A is a C∗-algebra
and if u = (uij) ∈Mn(A), we write: ū = (u∗ij) and uT = (uji). So u∗ = ūT .

By definition, a compact matrix quantum group (CMQG) is a unital C∗-algebra
A, together with a ∗-homomorphism ∆ : A→ A⊗A (minimal tensor product, always!), and
a unitary u = (uij) ∈Mn(A) for some n ∈ N, such that

• the elements uij (1 ≤ i, j ≤ n) generate A

• ∆(uij) =
∑

k uik ⊗ ukj, for all 1 ≤ i, j ≤ n

• ū is an invertible matrix

As the same suggests, (A,∆) above is indeed a compact quantum group. The matrices u
and ū are “corepresentation matrices” of (A,∆).

Many examples of compact quantum groups are in fact CMQGs. To see this, suppose
G is a closed subgroup of Un(C), for some n ∈ N (so G is compact). For i, j = 1, . . . , n,
define the function uij ∈ C(G) by uij(x) = xij. Then the C∗-algebra C(G) and u = (uij)
determines a CMQG, which coincides with

(
C(G),∆

)
earlier. Meanwhile, it is clear from

the definition that SUµ(2) earlier is also a CMQG.
On the other hand, not all compact quantum groups are CMQGs. A correct statement

is that a general compact quantum group is an inverse limit of CMQGs.

(3). Quantum permutation group (Wang, Banica, ...):
For n ∈ N. Denote by As(n) the universal C∗-algebra generated by elements uij (i, j =

1, . . . , n), such that u = (uij) is a magic unitary matrix. That is,

• each uij is a projection

• the projections ui1, . . . , uin are orthogonal and
∑

k uik = 1

• the projections u1j, . . . , unj are orthogonal and
∑

k ukj = 1

Note that ū = u for every magic unitary matrix u. We can show that there exists a unital
∗-homomorphism ∆ : As(n) → As(n)⊗As(n) such that ∆(uij) =

∑
k uik⊗ukj. And, it turns

out that
(
As(n),∆, u

)
is a CMQG. This is the quantum permutation group on n letters.

The quantum permutation group is related to the group S(n) of permutations on n
letters, and is a special case of a quantum automorphism group.
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(4). Universal quantum groups (Wang, Van Daele):
Let Q ∈ GLn(C), Q: positive, and define

Au(Q) := C∗{uij : u is unitary (so u∗ = u−1) and (uT )−1 = QūQ−1
}
,

where u = (uij) and ū = (u∗ij). There exists a unital ∗-homomorphism ∆u : Au(Q) →
Au(Q) ⊗ Au(Q) such that ∆u(uij) =

∑
k uik ⊗ ukj. It can be shown that

(
Au(Q),∆u

)
is a

compact quantum group.
The quantum groups Au(Q) are universal objects in the category of compact quantum

groups. In fact, any arbitrary compact matrix quantum group can be realized as a triple
(A,∆, π), where π : Au(Q) → A and ∆ : A→ A⊗ A are C∗-morphisms such that

• A = C∗{π(uij) : i, j = 1, . . . , n
}

• ∆
(
ker(π) ⊆ ker(π ⊗ π)

Similarly, suppose n ≥ 2 and consider now Q ∈ GLn(C) such that QQ̄ ∈ RIn. Define:

Bu(Q) = C∗{uij : u∗ = u−1, (uT )−1 = QuQ−1
}
,

where u = (uij). It is also a compact quantum group, with the comultiplication map defined
similarly as before. Again, the Bu(Q) become universal objects.

[Remark]: We skip details, but loosely speaking, the Au(Q) play the role of the unitary
group Un, and the Bu(Q) play the role of the orthogonal group On. For this reason, Bu(Q) is
often denoted by Ao(Q). The Au(Q) are referred to as free unitary quantum groups , and the
Bu(Q) (or Ao(Q)) as free orthogonal quantum groups . Unlike some other examples including
the quantum SUµ(2), these examples turn out to be non-nuclear in general, and cannot be
obtained as a deformation.

(5). Some recent developments on quantum automorphism groups and quantum
isometry groups (Banica, Bichon, Goswami, Bhowmick, ...):

[Definition]: We say that a compact quantum group (A,∆) acts on a (unital) C∗-algebra B,
if there is a unital ∗-homomorphism α : B → B ⊗ A such that

(α⊗ id) ◦ α = (id⊗∆) ◦ α

and that the linear span of α(B)(1⊗ A) is dense in B ⊗ A.
In particular, we are interested in the case when the C∗-algebra B is associated with a

certain “spectral triple” (in the sense of Connes), together with a certain Dirac operator.
The notion of a spectral triple is motivated by the classical examples of Riemannian spin
manifolds, and encodes the information about the underlying topology and the Riemannian
metric. Therefore, such a B may be loosely considered as a “quantum metric space” (Connes,
Rieffel). Then a natural question arises: If we are given a spectral triple with the underlying
C∗-algebra B, what are all compact quantum group actions on B, for which the given spectral
triple is equivariant? A universal object in this setting will lead us to the notion of a quantum
isometry group.
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Most of the earlier work were about some quantum automorphism groups of a “finite”
structure, including the quantum permutation group mentioned earlier. See works by Wang,
Banica, Bichon, Collins, .... Then recently, Goswami and Bhowmick developed various
notions of quantum isometry groups on certain spectral triples. They are defined as universal
objects in some subcategories of compact quantum groups acting on B, which satisfy some
technical conditions.

(6). Miscellany
One can consider free products and tensor products of compact quantum groups. One

can define the notions of quantum subgroups and normal quantum subgroups of compact
quantum groups. Recently, Wang has introduced a definition of a simple compact quantum
group. Using these notions, one may begin studying the problem of classifying compact
quantum groups. But this is not easy, even just for simple compact quantum groups.

One can consider the corepresentation theory of compact quantum groups, which turns
out to be more or less analogous to the representation theory of compact groups. By a
unitary corepresentation of a compact quantum group(A,∆) on a Hilbert space H, we mean
a map δ : H → H⊗ A such that

•
〈
δ(η), δ(ξ)

〉
= 〈η, ξ〉 · 1A for all η, ξ ∈ H

• the set δ(H)A is linearly dense in H⊗ A

• (idH⊗∆) ◦ δ = (δ ⊗ idA) ◦ δ

If δ is a unitary corepresentation of (A,∆) on H, then the map X : H � A → H ⊗ A,
η � a 7→ δ(η)a, extends to a unitary operator X ∈ B(H ⊗ A), and X12X13 = (id⊗∆)(X).
Going backwards, if X is such an operator, then the map δ : η 7→ X(η ⊗ 1) is a unitary
corepresentation. One studies the corepresentation theory in terms of these “unitary corep-
resentation operators”. Theory of multiplicative unitary operators (in the sense of Baaj
and Skandalis) is useful here. Meanwhile, using C∗-categories, Woronowicz proved a gen-
eralization of the Tannaka–Krein duality theorem: A compact quantum group is effectively
determined by its tensor category of finite-dimensional unitary corepresentations.

The notion of multiplicative unitary operators is also useful in general locally compact
quantum group theory and duality theory. We will discuss these later. For the case of
a compact quantum group, the “dual” object should be a discrete quantum group. The
underlying algebra of a discrete quantum group would be a direct sum of some matrix
algebras. Van Daele provided a general framework for unifying the theories of both compact
and discrete quantum groups, by introducing a purely algebraic theory of multiplier Hopf
algebras . This category includes far more than just compact and discrete quantum groups,
and has a satisfactory duality theory. The general theory of locally compact quantum groups
includes this, but it is of note that the multiplier Hopf algebras provided a strong motivation
for the development of the general theory.
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2.4 Locally compact quantum groups

To develop a general theory of locally compact quantum groups, where the underlying C∗-
algebra is possibly non-unital, we have to overcome some technical difficulties. Some of these
issues are not too serious, and can be managed by the usual operator algebra techniques.
For instance, instead of defining the comultiplication map as a unital ∗-homomorphism ∆ :
A → A ⊗ A satisfying the coassociativity, we may require that ∆ is a non-degenerate ∗-
homomorphism from A to M(A ⊗ A), where M(B) denotes the “multiplier algebra” of B.
By the non-degeracy of ∆, the condition (∆⊗ id)∆ = (id⊗∆)∆ makes sense.

However, there are more serious issues: It turns out that if we just use a definition similar to
the one given for the compact case, the existence of the Haar weights cannot be proved out
of the axioms. Note here that we no longer expect a Haar state, because the situation is in
general non-compact. We have to replace the notion of a state or a linear functional to that
of a weight, but then it is already not easy to make sense of the left or right invariance. It
turns out that the correct approach (by Kustermans, Vaes, Masuda, Nakagami, Woronowicz)
is to assume the existence of suitable Haar weights as part of the axioms.

There are difficulties also in constructing examples. Recall that most of the known examples
of compact quantum groups (see previous section) are described in terms of generators and
relations, where the generators are sometimes coordinate functions. However, in the non-
compact case, the generators are usually unbounded, and this causes serious obstacles. For
the “quantum E(2) group” (see below), Woronowicz introduced the notion of unbounded
elements “affiliated” to C∗-algebras and managed the problem, but in general, working with
the generators and relations approach in the non-compact case is highly non-preferable.

Having said these, let us introduce the general theory of locally compact quantum groups.
We will first begin with some preliminaries.

2.4.1 Preliminaries: Weights and Tomita–Takesaki theory

[Weights] Let M be a von Neumann algebra. A weight on M is a map ϕ : M+ → [0,∞]
such that ϕ(a+ λb) = ϕ(a) + λϕ(b) for a, b ∈ M+ and λ ∈ [0,∞), with the convention that
λ +∞ = ∞, λ · ∞ = ∞ if λ > 0, and 0 · ∞ = 0. Given a weight we consider the following
sets:

Nϕ =
{
a ∈M : ϕ(a∗a) <∞

}
, M+

ϕ =
{
a ∈M+ : ϕ(a) <∞

}
, Mϕ = N∗

ϕNϕ.

The weights we usually consider are “f.n.s. (faithful normal semi-finite) weights”. This means
that ϕ(a) = 0, a ∈M+, means a = 0; Mϕ is σ-weakly dense in M (it is “finite”, if Mϕ = M);
and ϕ is (σ-weakly) lower semicontinuous.

We can also consider the notion of a weight on a C∗-algebra A, and the sets Nϕ, M+
ϕ ,

Mϕ. In the setting of C∗-algebras, we usually work with the “approximately KMS weights”.
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Basically, they are the ones that naturally extend to f.n.s. weights on its enveloping von
Neumann algebra.

By standard theory, for an f.n.s. weight ϕ on M , one can associate to it a “GNS-
construction” (Hϕ, πϕ,Λϕ). Here, Hϕ is a Hilbert space, Λϕ : Nϕ → Hϕ is a linear map
such that Λϕ(Nϕ) is dense in Hϕ and

〈
Λϕ(a),Λϕ(b)

〉
= ϕ(b∗a) for a, b ∈ Nϕ, and πϕ is a

∗-representation of M on Hϕ defined by πϕ(c)Λϕ(b) = Λϕ(cb) for c ∈ M , b ∈ Nϕ. The
GNS-construction is unique up to a unitary transformation. It turns out that πϕ is isometric
and is a σ-weak homomorphism of M onto πϕ(M). Therefore, it is customary to identify M
with πϕ(M) and regard M ⊆ B(Hϕ), πϕ(a) = a.

[Generalized Hilbert algebras] For a fixed f.n.s. weight ϕ on M , consider the set Uϕ =
Λϕ(Nϕ ∩N∗

ϕ). It is an involutive algebra, with multiplication: Λϕ(a) · Λϕ(b) := Λϕ(ab), and
the involution ] defined by Λϕ(a)

] := Λϕ(a
∗), for a, b ∈ Nϕ ∩N∗

ϕ. It is dense in Hϕ, and with
respect to the inner product, we have: 〈ξη, ζ〉 = 〈η, ξ]ζ〉, for all ξ, η, ζ ∈ Uϕ. In addition, its
involution is antilinear preclosed mapping. That is, the map ξ 7→ ξ], ξ ∈ Uϕ, extends to a
closed operator S.

In general, we call left Hilbert algebra an involutive algebra (U , ]) equipped with an inner
product, such that the involution is an antilinear preclosed mapping in the Hilbert space
H associated, and such that the left-multiplication representation π of U is non-degenerate,
bounded and involutive. We write S the closure of ], and F the adjoint S∗ of S. The domains
of S and F are denoted by D] and D[.

Consider now the class of “right bounded” elements, defined by

U ′ = {ξ ∈ D[ : the map η 7→ π(η)ξ, η ∈ U , is bounded }.

Then each ξ ∈ U ′ gives rise to a bounded operator π′(ξ) ∈ B(H), such that π′(ξ)η = π(η)ξ.
Note that if ξ ∈ U ′, then ξ[ ∈ U ′ and π′(ξ[) = π′(ξ)∗. In fact. the set U ′, together with the
multiplication: ξ1 · ξ2 := π′(ξ2)ξ1 and the involution: ξ 7→ ξ[ = Fξ, is a right Hilbert algebra
(with the obvious definition). So by repeating a similar argument and considering the “left
bounded” elements, we would obtain another left Hilbert algebra U ′′. Clearly, the algebra
U ′′ contains U as an involutive subalgebra, with the operator S again being the closure of
the involution of U ′′.

A left Hilbert algebra U is called “achieved”, if U ′′ = U . For an f.n.s. weight ϕ, the
left Hilbert algebra Uϕ constructed above is achieved. Conversely, any achieved left Hilbert
algebra U is of the form Uϕ = Λϕ(Nϕ ∩N∗

ϕ), where M = π(U)′′ and ϕ is defined by

ϕ(a) =

{
‖ξ‖2, if a = π(ξ]ξ) for some ξ ∈ U
∞, otherwise

which turns out to be an f.n.s. weight on M .

[Tomita–Takesaki theory] Let ϕ be a f.n.s. weight on a von Neumann algebra M , with
GNS triple (Hϕ, πϕ,Λϕ). We identify M with πϕ(M). Then there exists a self-adjoint
antiunitary operator J and an invertible (possibly unbounded) positive self-adjoint operator
∆ in H = Hϕ such that
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• S = J∆1/2 and F = J∆−1/2 are the polar decompositions of the operators S and F

• J∆J = ∆−1, and consequently, Jf(∆)J = f̄(∆−1) for any Borel function f on (0,∞)

• ∆itM∆−it = M for all t ∈ R, and JMJ = M ′

Note that we can see from above that D] = Dom(∆1/2) and D[ = Dom(∆−1/2).
This result leads us to the notion of the modular automorphism group (σϕt ), which is a

σ-weakly continuous one-parameter group defined by

σϕt (a) = ∆ita∆−it, for a ∈M , t ∈ R.
It can be shown that ϕ = ϕ ◦ σϕt , and that the modular automorphism group satisfies the
“KMS condition”: That is, for every a, b ∈ Nϕ ∩N∗

ϕ, there exists a bounded function F on

the strip
{
z ∈ C : 0 ≤ Im(z) ≤ 1

}
, holomorphic in its interior, such that for all t ∈ R, we

have: F (t) = ϕ
(
σϕt (b)a

)
and F (t+ i) = ϕ

(
aσϕt (b)

)
. In fact, these two properties characterize

the modular automorphism group.
For technical reasons, it is useful to know that there exists a maximal subalgebra U0 of

U ′′ ∩ U ′, which is both a left and right Hilbert algebra, with U ′0 = U ′ and U ′′0 = U ′′, and
which is globally invariant under the closed linear operators ∆z, for all z ∈ C. The algebra
U0 is called the “maximal modular subalgebra of U ′′ (or the “Tomita algebra”).

If ϕ is a trace, so ϕ(a∗a) = ϕ(aa∗) for all a ∈ M , then Nϕ = N∗
ϕ, Sϕ = Jϕ, ∆ϕ = 1,

and σϕt ≡ 1. In particular, if trH is the canonical trace on B(H), the NtrH is the algebra of
Hilbert–Schmidt operators on H.

In addition to these basics weight theory, one can also consider the notions of “tensor prod-
uct”, “Radon–Nikodym derivative”, etc. Please refer to the textbooks.

2.4.2 Definition of a locally compact quantum group

[Definition] (Kustermans, Vaes): Lat A be C∗-algebra, and consider a non-degenerate ∗-
homomorphism ∆ : A→M(A⊗ A) such that

1. (∆⊗ id)∆ = (id⊗∆)∆.

2.
[{

(ω ⊗ id)(∆a) : ω ∈ A∗, a ∈ A
}]

= A and
[{

(id⊗ω)(∆a) : ω ∈ A∗, a ∈ A
}]

= A,
where [X] denotes the closed linear span of X.

3. We further assume that there exist weights ϕ and ψ such that ϕ is a faithful, left
invariant approximate KMS weight on (A,∆). That is,

ϕ
(
(ω ⊗ id)(∆a)

)
= ω(1)ϕ(a),

for all a ∈ Mϕ
+ and ω ∈ A∗+. By ω(1), we mean ‖ω‖. While, ψ is a right invariant

approximate KMS weight on (A,∆). Or,

ψ
(
(id⊗ω)(∆a)

)
= ω(1)ψ(a).

Then we say that (A,∆) is a (reduced) C∗-algebraic quantum group.
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[Remarks]: First condition is the “coassociativity” condition for the comultiplication ∆. By
the non-degeneracy, it can be naturally extended to M(A) [we can also extend (∆ ⊗ id)
and (id⊗∆)], thereby making the expression valid. The two density conditions more or
less correspond to the cancellation property in the case of ordinary groups. The last axiom
corresponds to the existence of Haar measure. As we noted earlier, the approximate KMS
weights on a C∗-algebra are more or less the ones corresponding to the f.n.s. weights on the
von Neumann algebra level. In fact, the weights ϕ and ψ actually turn out to be faithful
KMS weights.

In the definition above, the left and right invariance conditions of the Haar weights are
required to hold only for a ∈ Mϕ

+. This is a very weak form of left/right invariance. In
the case of locally compact quantum groups, it turns out that the results can be extended
and much stronger left/right invariance conditions can be proved. The proof is non-trivial.
This was one of the important contributions made by Kustermans and Vaes. It can be also
shown that the Haar weights unique, up to a scalar multiplication.

The fact that the existence of the Haar weights need to be included in the axioms is a
drawback. Nevertheless, the definition is relatively simple, and is a huge improvement over
various attempts which have been made earlier. From the definition, one can build other
structure maps, especially the antipode. We will talk a little about this later. An alternative
(but essentially equivalent) formulation was given by Masuda, Nakagami, Woronowicz.

This definition gives us a “quantized C0(G)”, where G is a locally compact group. In fact,
when (A,∆) is a C∗-algebraic quantum group and A is commutative, then we can find
a locally compact group G such that (A,∆) is exactly the Example (1) given earlier in
§ 2.2. Meanwhile, there is the notion of a “von Neumann algebraic locally compact quantum
group”, which would correspond to a “quantized L∞(G)”. See below.

[Definition]: LetM be a von Neumann algebra, together with a unital normal ∗-homomorphism
∆ : M → M ⊗M such that the “coassociativity condition” holds: (∆⊗ id)∆ = (id⊗∆)∆.
Furthermore, we assume the existence of a left invariant weight and a right invariant weight,
as follows:

• ϕ is an f.n.s. weight on M that is left invariant:

ϕ
(
(ω ⊗ id)(∆x)

)
= ϕ(x)ω(1), for all ω ∈M+

∗ , x ∈ M+
ϕ .

• ψ is an f.n.s. weight on M that is right invariant:

ψ
(
(id⊗ω)(∆x)

)
= ψ(x)ω(1), for all ω ∈M+

∗ , x ∈ M+
ψ .

Then we call (M,∆) a von Neumann algebraic quantum group. It can be shown that
the Haar weights are unique, up to scalar multiplication.

[Remark]: It turns out that this definition is known to be equivalent to the definition in
the C∗-algebra setting. For instance, the enveloping von Neumann algebra of a C∗-algebraic
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quantum group, together with the natural extensions of the map ∆ and the weights ϕ, ψ,
will give us a von Neumann algebraic quantum group. This equivalence result is surprising
but not unexpected, because a similar result is known to hold in the ordinary group case.
The noticeable difference between the two approaches is the absence of the density conditions
in the von Neumann algebra setting: They follow automatically from the other conditions.
Since the two approaches are completely equivalent, and since the vN-algebra approach seems
simpler, we will from now on work mostly with the von Neumann algebraic definition.

In the next a few subsections, we will discuss some basic results on locally compact
quantum groups, that follow immediately from the definition.

2.4.3 Multiplicative unitary operator

Let (M,∆) be a von Neumann algebraic quantum group, and let us fix ϕ, the left invariant
Haar weight. By means of the GNS-construction (H, ι,Λ) for ϕ, we view M as a subalgebra
of the operator algebra B(H), such as M = ι(M) ⊆ B(H). So we will have:

〈
Λ(x),Λ(y)

〉
=

ϕ(y∗x) for x, y ∈ Nϕ, and xΛ(y) = Λ(xy) for y ∈ Nϕ, x ∈M . As in standard weight theory,
we can consider the modular conjugation and the modular automorphism group (σϕt ).

Meanwhile, there exists a unitary operator W ∈ B(H ⊗ H), called the multiplicative
unitary operator for (M,∆). It is defined by W ∗(Λ(a)⊗ Λ(b)

)
= (Λ⊗ Λ)

(
(∆b)(a⊗ 1)

)
, for

a, b ∈ Nϕ. It satisfies the pentagon equation: W12W13W23 = W23W12, and one can check that
∆a = W ∗(1⊗ a)W , for a ∈M . It is essentially the “left regular representation” (associated
with ϕ), and it gives the following useful characterization of M :

M = A(W )
w

=
{
(id⊗ω)(W ) : ω ∈ B(H)∗

}w (
⊆ B(H)

)
,

where −w denotes the von Neumann algebra closure (the closure under σ-weak topology).

If we consider instead the norm closure A(W )
‖ ‖

, we would obtain a characterization of the
associated C∗-algebraic quantum group (A,∆).

[Some words on multiplicative unitaries]: A unitary operator V ∈ B(H⊗H), where H is a
Hilbert space, is said to be a multiplicative unitary, if it satisfies the pentagon equation:
V12V13V23 = V23V12. First examples were around for some time, but Baaj and Skandalis
introduced the general definition and developed a systematic theory.

Multiplicative unitaries are fundamental to the theory of locally compact quantum groups,
and to generalizations of Pontrjagin duality. Loosely speaking, a multiplicative unitary is
a map that simultaneously encodes all structure maps of a quantum group and of its dual
object. Out of every multiplicative unitary, one can construct a dual pair of von Neumann
bialgebras. So multiplicative unitaries are useful in constructing examples of quantum groups
and its dual (they are useful not just in constructing bialgebras but sometimes in obtaining
the antipodes or the Haar weights). This is especially important in the case of non-compact
quantum groups, because there are not as many construction methods available as in the
compact case.
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Given a multiplicative unitary operator V ∈ B(H ⊗ H), one considers two subspaces,
A(V ) and Â(V ), of B(H), as follows:

A(V ) =
{
(id⊗ω)(V ) : ω ∈ B(H)∗

}
and Â(V ) =

{
(ω ⊗ id)(V ) : ω ∈ B(H)∗

}
.

They are actually subalgebras. For instance, for elements a = (id⊗ω)(V ) and b = (id⊗ω′)(V )
in A(V ), for ω, ω′ ∈ B(H)∗, we have:

ab = (id⊗ω ⊗ ω′)(V12V13) = (id⊗ω ⊗ ω′)(V23V12V
∗
23) = (id⊗θ)(V ) ∈ A(V ),

where θ ∈ B(H)∗ is such that θ(T ) := (ω ⊗ ω′)(V (T ⊗ id)V ∗). In addition, each of the sets
A(V )H, A(V )∗H, Â(V )H, Â(V )∗H is linearly dense in H.

On the other hand, the subalgebras A(V ) and Â(V ) are not self-adjoint in general. There
are some criteria that ensure the self-adjointness. To be a little more precise, consider the

space C(V ) :=
{
(ω ⊗ id)(V Σ) : ω ∈ B(H)∗

}‖ ‖ (
⊆ B(H)

)
, where Σ ∈ B(H ⊗ H) denotes

the flip map ξ ⊗ η 7→ η ⊗ ξ. A multiplicative unitary operator V is said to be “regular”,
if K(H) = C(V ), and “semi-regular”, if K(H) ⊆ C(V ) (Baaj, Skandalis). There are also
the notion of “manageability” (Woronowicz) and a more general notion of “modularity”
(Soltan, Woronowicz). For these well-behaved multiplicative unitaries, we are able to obtain

C∗-bialgebras A(V ) = A(V )
‖ ‖

and Â(V ) = Â(V )
‖ ‖

.
It should be noted that a multiplicative unitary operator (even a well-behaved one) only

determines a pair of C∗-bialgebras, not a quantum group. For example, the operator idH⊗H is
a regular multiplicative unitary, but it does not give us a quantum group. On the other hand,
many examples of quantum groups are known to be regular, including C0(G), the Kac–von
Neumann algebras, and the compact quantum groups. However, the quantum group Eµ(2)
was shown to be semi-regular but not regular (Baaj), and there are some examples of locally
compact quantum groups that are not even semi-regular (Baaj, Skandalis, Vaes). For these
examples, it turns out that the C∗-algebra [AÂ] can be highly non-trivial.

The manageability condition and the modularity condition are somewhat more technical,
and we do not describe them here. But, they are particularly well adapted to unitaries
associated to quantum groups. It is known that the multiplicative unitary of every locally
compact quantum group is manageable.

2.4.4 The antipode

Let (M,∆) be a locally compact quantum group with left Haar weight ϕ, right Haar weight
ψ, and multiplicative unitary W . Then there exists a unique closed, densely defined linear
map S : Dom(S) ⊆M →M such that

• span
{
(id⊗ϕ)(∆(b∗)(1⊗ a)) : a, b ∈ Nϕ

}
(⊆M) is a core for S, and

S
(
(id⊗ϕ)(∆(b∗)(1⊗ a))

)
= (id⊗ϕ)((1⊗ b∗)∆(a)), for all a, b ∈ Nϕ.
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• span
{
(ψ ⊗ id)((b∗ ⊗ 1)∆(a)) : a, b ∈ Nψ

}
(⊆M) is a core for S, and

S
(
(ψ ⊗ id)((b∗ ⊗ 1)∆(a))

)
= (ψ ⊗ id)(∆(b∗)(a⊗ 1)), for all a, b ∈ Nψ.

• A(W ) (⊆M) is a core for S, and S
(
(id⊗ω)(W )

)
= (id⊗ω)(W ∗), for all ω ∈ B(H)∗.

In addition, there exist a unique σ-strongly∗ continuous one-parameter group (τt) and a
unique ∗-anti-automorphism R on M , such that S = Rτ−i/2 is the polar decomposition of S.

The details are quite technical. In short, one first constructs a certain closed, densely
defined operator G on H, which essentially corresponds to the map a 7→ S(a∗). The operator
N = G∗G is strictly positive, and there exists a unique anti-unitary I on H such that
G = IN1/2. It is known that I = I∗, I2 = 1, and INI = N−1. Then we define R(a) = Ia∗I
and τt(a) = N−itaN it, for all a ∈ M and t ∈ R, and let S := Rτ−i/2. Both the right
Haar weight and the left Haar weight are needed to show that S is well-defined and densely
defined. We call S the antipode, R the unitary antipode, and τ the scaling group.

In the below are some results concerning the antipode and its polar decomposition. See
the main papers (Kustermans, Vaes) for proofs of these, as well as some other results.

• S, R, τ commute, i. e. S ◦R = R ◦ S, τt ◦R = R ◦ τt, τt ◦ S = S ◦ τt for all t ∈ R.

• R2 = idM , S2 = τ−i. Though S2 6= idM in general, it is injective, and S−1 = τi/2 ◦R.

• For all a, b ∈ Dom(S), we have S(ab) = S(b)S(a) and S
(
S(a)∗

)∗
= a.

• (R⊗R) ◦∆ = ∆cop ◦R, where ∆cop is the co-opposite comultiplication.

• ϕ ◦R is a right Haar weight and ψ ◦R is a left Haar weight.

• There exists a constant ν > 0 (called the scaling constant) such that ϕ ◦ τt = ν−tϕ,
ψ ◦ τt = ν−tψ, ϕ ◦ σψt = νtϕ, ψ ◦ σϕt = ν−tψ.

Considering the fifth item, it is customary to fix the right Haar weight as ψ = ϕ ◦ R, with
the corresponding GNS map written as Γ. The existence of the scaling constant (sixth item)
is a purely quantum phenomenon that does not appear in the ordinary group case.

2.4.5 The dual quantum group

The scaling group (τt) is used to show that the multiplicative unitary operator W associated
to the locally compact quantum group (M,∆) is manageable. Therefore, by the theory of
multiplicative unitaries, we obtain the von Neumann bialgebra (M̂, ∆̂), by

M̂ = Â(W )
w

=
{
(ω ⊗ id)(W ) : ω ∈ B(H)∗

}w
,

together with the comultiplication ∆̂b := ΣW (b ⊗ 1)W ∗Σ, for b ∈ M̂ . By considering the
norm completion, we would also obtain the C∗-bialgebra (Â, ∆̂).

29



There is a natural way of defining the appropriate Haar weights ϕ̂ and ψ̂, and it can
be shown that (M̂, ∆̂) is also a locally compact quantum group, which is the dual quantum
group. The operator Ŵ := ΣW ∗Σ is the multiplicative unitary for (M̂, ∆̂). It can be shown
that W ∈M ⊗ M̂ and ΣW ∗Σ ∈ M̂ ⊗M .

The left Haar weight ϕ̂ on (M̂, ∆̂) is uniquely characterized by the GNS data (H, ι, Λ̂),
where the GNS map Λ̂ : Nϕ̂ → H is given by the following formulas:

Λ̂
(
(ω ⊗ id)(W )

)
= ξ(ω) and

〈
ξ(ω),Λ(x)

〉
= ω(x∗).

To be a little more precise, consider:

I =
{
ω ∈ B(H)∗ : ∃L ≥ 0 such that |ω(x∗)| ≤ L‖Λ(x)‖ for all x ∈ Nϕ

}
.

Then for every ω ∈ I, we can find ξ(ω) ∈ H such that ω(x∗) =
〈
ξ(ω),Λ(x)

〉
for all x ∈ Nϕ (by

Riesz theorem). The equation above is understood as saying that the elements (ω⊗ id)(W ),
ω ∈ I, form a core for Λ̂ and that Λ̂

(
(ω ⊗ id)(W )

)
= ξ(ω).

Meanwhile, analogously as before, with Ŵ = ΣW ∗Σ now being the multiplicative unitary,
the (dense) subspace of the elements (ω ⊗ id)(W ∗), for ω ∈ B(H)∗, forms a core for the
antipode Ŝ, and Ŝ is characterized by Ŝ

(
(ω⊗ id)(W ∗)

)
= (ω⊗ id)(W ). The unitary antipode

and the scaling group can be also found, giving us the polar decomposition of Ŝ = R̂τ̂− i
2
.

Repeating the whole process beginning with (H, ι, Λ̂), we can further construct the dual

(
ˆ̂
M,

ˆ̂
∆) of (M̂, ∆̂). The generalized Pontryagin duality result says: (

ˆ̂
M,

ˆ̂
∆) = (M,∆), with

ˆ̂ϕ = ϕ and
ˆ̂
Λ = Λ. The other structure maps for (

ˆ̂
M,

ˆ̂
∆) are also identified with those

of (M,∆): For instance,
ˆ̂
S = S. One useful result is the following, similar to an earlier

equation, with π now considered as the embedding map ι and
ˆ̂
Λ = Λ:〈

Λ
(
(id⊗ω)(W ∗)

)
, Λ̂(y)

〉
= ω(y∗).

Here again, we actually need to consider a similar set Î, and the equation is accepted with
the understanding that the elements (id⊗ω)(W ∗), ω ∈ Î, form a core for Λ.

[Remark]: The results here show that the quantum group theory has a satisfactory duality
picture. In general, the “dual” object of an arbitrary locally compact group is no longer a
group. However, by going to a larger category of quantum groups, one can consider both
groups and their dual objects using the unified language of quantum groups. This point of
view will be explored a little further in Chapter 3.
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2.5 Examples of locally compact quantum groups

Due to the highly technical nature of the locally compact quantum group theory, there have
been only a handful of examples constructed until recently. But the situation is slowly
improving. The following is a small sample of examples.

(1). Compact quantum groups: Of course, all compact quantum groups are locally
compact quantum groups. In the compact case, the Haar weights are always bounded, and
there is no distinction between left and right Haar weights. So it is customary to consider
the unique Haar state, by requiring that ϕ(1) = 1.

(2). Quantum E(2) group: To construct a C∗-algebra that can be considered as a “quan-
tized C0(G)”, a possible method of approach is to work in terms of generators and relations,
where the generators are “(quantum) coordinate functions”. Unlike in the compact case,
however, these generators will be in general unbounded, and in particular, they cannot be-
long to the C∗-algebra itself. One needs to discuss unbounded elements that are affiliated
with the C∗-algebra and clarify in which sense such elements can generate the C∗-algebra.
Baaj and Woronowicz introduced the notion of affiliation relation, and used it to construct
the quantum group Eµ(2).

Briefly speaking, an element T should be affiliated with a C∗-algebra A if bounded
continuous functions of T belong to M(A). In particular, we expect z(T ) ∈ M(A), where
z : C → C is defined by z(λ) = λ√

1+|λ|2
. Since 1 − |z(λ)|2 = (1 + |λ|2)−1 for all λ ∈ C, we

should have: z(T ) = T
(
1− |z(T )|2

) 1
2 ∈M(A). This observation suggests the following:

[Definition]: Let A be a C∗-algebra and T : Dom(T ) ⊆ A→ A a densely defined linear map.
We say T is affiliated with A, written TηA, if there exists a zT ∈M(A) such that ‖zT‖ ≤ 1
and for all x, y ∈ A,

x ∈ Dom(T ) and y = Tx ⇐⇒ there exists a ∈ A with x = (1− z∗T zT )
1
2a and y = zTa.

Here, the element zT is called the “z-transform” of T , and is uniquely determined by T .

[Remark]: There exists the notion of an affiliated element of a von Neumann algebra, but it
is different from the notion introduced above. If M is a von Neumann algebra and T is an
affiliated element of M in the C∗-algebraic sense, then T ∈M . Meanwhile, there are various
technical issues to consider, some of which are not trivial, like making sense of the tensor
products of affiliated elements, etc. Refer to the papers by Woronowicz.

The quantum group Eµ(2) was constructed by Woronowicz. First consider the group

E(2) ⊂ GL2(C), consisting of all matrices of the form g(v,n) =

(
v n
0 v̄

)
, where v ∈ T, n ∈ C.

The group acts on C by g(v,n)λ = v2λ+vn, and {I2,−I2} is the kernel of this action. So E(2)
is the unique connected double cover of the group of rotations and dilations of the Euclidean
plane. The ∗-algebra A of polynomial functions contained in C

(
E(2)

)
is generated by the

coordinate functions v : g(v,n) 7→ v and n : g(v,n) 7→ n. As a deformation, define Aµ, the
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universal unital ∗-algebra generated by elements v and n, with the relations that: v is unitary
(v∗v = 1 = vv∗), n is normal (n∗n = nn∗), and vn = µnv.

The C∗-algebra Eµ(2), constructed as a certain crossed product algebra, turns out to be a
universal C∗-algebra with affiliated elements v and n satisfying the algebraic relations above.
There also some additional spectral conditions on the generators, so that the comultiplication
is well defined. In this way, one obtains a C∗-bialogebra

(
Eµ(2),∆

)
. One can also consider

the dual C∗-bialgebra Êµ(2), as well as the corepresentation theories of Eµ(2) and Êµ(2).
Later, a left- and right-invariant Haar weight on

(
Eµ(2),∆

)
was found by Baaj, which

means that
(
Eµ(2),∆

)
is in fact a (unimodular) locally compact quantum group. He also

studied the multiplicative unitary associated to Eµ(2) and showed that it is not regular but
only semi-regular. More recently, Jacobs gave a different approach of constructing Eµ(2).

Meanwhile, it is known that the quantum groups Eµ(2) and SUµ(2) are related via a
certain contraction procedure.

(3). Quantum group S̃Uµ(1.1): Recall that SU(1, 1), which is isomorphic to SL(2,R), is

the linear Lie group
{
X ∈ SL(2,C) : X∗UX = U

}
, where U =

(
1 0
0 −1

)
. Various attempts

have been made since the early days of quantum groups to construct a “quantum SU(1, 1)
group”, but ultimately failed. Woronowicz showed that quantum SU(1, 1) does not exist
as a locally compact quantum group! Not surprisingly, this was considered to be quite a
setback for the theory of locally compact quantum groups in the operator algebra setting.

Later works gave strong indications that the normalizer N = NSL(2,C)

(
SU(1, 1)

)
of

SU(1, 1) in SL(2,C) is a better quantization candidate than SU(1, 1) itself. By using the
method of generators and relations, Koelink and Kustermans constructed Nq, a locally com-
pact quantum group that is a deformation of N . A heavy dose of special function theory is
needed, using a certain class of q-hypergeometric functions and their orthogonality relations,
to construct the coassociative comultiplication. The Haar weight, antipode, and its polar
decomposition were all obtained.

(4). Quantum az + b-group: The quantum az + b-group was originally constructed by
Woronowicz, and further studied later by Van Daele and Soltan. First, one starts from the
classical az + b-group of affine transformations of the plane C. It can be identified with

the subgroup G of GL(2,C), consisting of all matrices of the form

(
a b
0 1

)
, where a, b ∈ C,

a 6= 0. As before, consider the coordinate functions a and b, which are the generators of
the ∗-subalgebra A ⊂ C(G). The subalgebra A can be characterized as the universal unital
commutative ∗-algebra generated by elements a, b, where a is invertible. It becomes a Hopf
∗-algebra, together with ∆(a) = a⊗ a, ∆(b) = a⊗ b+ b⊗ 1, and the maps ε and S given by
ε(a) = 1, ε(b) = 0, S(a) = a−1, S(b) = −a−1b, S(a∗) = (a∗)−1, S(b∗) = −(a∗)−1b∗.

For a deformation, fix µ ∈ C, µ 6= 0, and define Aµ, the unital ∗-algebra generated by
elements a, b such that: a is normal and invertible, b is normal, ab = µ2ba, ab∗ = b∗a. It is
again a Hopf ∗-algebra, with ∆, ε, S as before. And, there exists a dual pairing 〈 , 〉 of Aµ

with itself such that 〈a, a〉 = µ2, 〈a, b〉 = 〈b, a〉 = 0, 〈b, b〉 = t, where t ∈ C is arbitrary.
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When we try to move on to the C∗-algebra setting, the generators a and b should be
normal operators on a Hilbert space. Let a = u|a| and b = v|b| be the polar decompositions.
Then it is appropriate to replace the earlier algebraic relations by the following: a, b are
normal, Ker(a) = {0}, ubu∗ = µb, |a|itb|a|−it = µitb for all t ∈ R. The real issue is in
constructing the comultiplication, because the comultiplication for the Hopf ∗-algebra Aµ

does not carry over. So similarly as in the case of the quantum group Eµ(2), we would need
some extra spectral conditions on the generators, and construct a universal C∗-algebra as a
certain crossed product algebra.

It turns out that it is actually easier to construct a good multiplicative unitary W . This
can be done using certain “quantum exponential function”, and also using the dual pairing
above. The antipode map and the Haar weights follow from W , though technical. Using a
similar approach as above, one can also construct the “quantum ax+ b-group”.

One interesting feature to point out is that in this example, we have: ψ ◦ τt = |µ−4it|ψ.
This means that the scaling constant ν is in general not 1. The quantum az + b-group was
the first example of a locally compact quantum group with scaling constant not equal to 1.

(5). The bicrossed product construction: Given an action of a group G on a C∗-algebra
A, one obtains a C∗-dynamical system (G,A, α), from which one can construct the crossed
product C∗-algebra A oα G. Regarding A as a quantum space or a quantum manifold,
this framework would encode (non-commutative) geometric information about the system,
including the orbits. A natural question to ask is: What if G acts (α) on a space X, which
is itself a group and also acts (γ) on G, with the two actions “compatible” with each other?
From this, we would be able to form two crossed products C0(X) oα G and C0(G) oγ X.
With the “compatibility”, they will become quantum groups. This suggests us the notion of
a “matched pair” of groups (Kac, Majid, Baaj, Skandalis, Vaes, Vainerman, ...). See below.

Let G and H be locally compact groups, and suppose that the maps

α : G×H → H, (g, s) 7→ αg(s) and γ : G×H → G, (g, s) 7→ γs(g)

are defined nearly everywhere and measurable. Suppose further that

γst(g) = γs
(
γt(g)

)
, αg(st) = αγt(g)(s)αg(t), for nearly all (s, t, g),

αgh(s) = αg
(
αh(s)

)
, γs(gh) = γαh(s)(s)γs(h), for nearly all (g, h, s).

Then we say (G,H) is a matched pair of groups. Earlier definitions had the αg(s) and the
γs(g) to be everywhere defined and continuous. But the conditions have been loosened, to
allow for more interesting examples.

Let (G,H) be a matched pair. Define α : L∞(H) → L∞(G × H) by
(
α(f)

)
(g, s) :=

f
(
αg(s)

)
. Then we will have: (id⊗α)α = (∆G⊗id)α, where ∆G is the usual comultiplication

on L∞(G). From this data, we can define the crossed product von Neumann algebra M , as
the von Neumann algebra generated by α

(
L∞(H)

)
and L(G)⊗ 1, where L(G) is the group

von Neumann algebra. We see that M acts naturally on the Hilbert space L2(G×H). Now
define the unitary operator W ∈ B

(
L2(G×H ×G×H)

)
, by

Wξ(g, s;h, t) := ξ
(
γαg(s)−1t(h)g, s;h, αg(s)

−1t
)
.
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This becomes a multiplicative unitary, and we can define a comultiplication on M by the
formula: ∆(z) = W ∗(1 ⊗ z)W , for z ∈ M . It turns out that (M,∆) is a locally compact
quantum group, with its (left) Haar weight obtained as the dual weight on M of the (left)
invariant weight on L∞(H).

In addition to the matched pair data, we may incorporate cocycles satisfying certain
equivariance conditions. In this way, we obtain a “cocycle matched pair”, and as above, we
can construct a locally compact quantum group by first constructing a suitable multiplicative
unitary operator. These constructions are special cases of the bicrossed product construction
and the cocycle bicrossed production frameworks, where we consider matched pairs or cocycle
matched pairs of quantum groups. “Kac systems” by Baaj and Skandalis, and Drinfeld’s
celebrated “quantum double construction” can be covered under these frameworks.

The best aspect about the bicrossed product framework is that it does not rely on the
(possibly unbounded) generators and relations, and therefore technically simpler. Still, the
framework is sufficiently general to include some interesting examples. For instance, this
was the method used by Baaj, Skandalis, Vaes, when they constructed a non-semiregular
quantum group. However, as is the case for any general method, having the framework is
not enough to construct actual examples: One would need a supply of specific matched pairs
together with compatible cocycles. A possible suggestion is given below.

[Combining a geometric approach with the bicrossed product framework] (Kahng): We indi-
cated earlier that Poisson–Lie groups are natural candidates to perform quantization, hope-
fully obtaining quantum groups. On the other hand, deformation quantization of a Poisson
structure usually gives us only the underlying algebra. Construction of the comultiplication
and other structure maps for the quantum group would be carried out separately, often
guided by the Poisson–Lie group data.

In some cases, when enough information is known at the level of the Poisson–Lie group
and if the Poisson bracket is of a certain type, we may be able to streamline the process a
little by incorporating the bicrossed product framework.

For instance, consider the three examples of Poisson–Lie group structures given towards
the end of § 1.4. Each of them is a cocycle perturbation of a linear Poisson bracket on h∗,
and we know from §1.3 (4) that it can be also considered as a central extension of the linear
Poisson bracket on (h/z)∗. This means that there is a good chance of finding a suitable
cocycle matched pair. Indeed, in our given example, we achieved a success by working with
G1

∼= z⊥, G2
∼= h/z, and a group cocycle corresponding to the Lie algebra cocycle built

into the Poisson bracket. As quantum groups, these examples are relatively simple. By
considering more complicated types of Poisson structures, we may be able to construct more
interesting examples of quantum groups.

An advantage of having a Poisson geometric perspective on quantum groups is that the
Poisson–Lie group data and the relevant “dressing actions” could shed some lights on the
representation theory. For our specific quantum groups, some modest results on representa-
tion theory were obtained using the dressing orbits, the symplectic leaves, and Kirillov-type
orbit analysis.
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Chapter 3

Beyond quantum groups—Duality,
Quantum groupoids

In a certain sense, the two most prominent motivations for studying quantum groups are:
(1). Providing a framework for quantum symmetry; and (2). Providing a generalized duality
framework.

In principle, a quantum group is a natural generalization of a group within the setting of
non-commutative (or quantum) geometry. Just as the groups naturally arise as the objects
encoding the symmetry of various physical systems, one may expect that the quantum groups
should play similar roles as the “quantum symmetry” objects: There may be a situation in
quantum physics in which the symmetry in the classical sense is broken, but by working with
a more general framework of quantum groups we could encode the (quantum) symmetry of
the system.

In fact, the very first notions of quantum groups were introduced by Faddeev, Drin-
feld, et. al., as they were developing the “quantum inverse scattering method (QISM)”, with
the hope that they could construct and solve “integrable” quantum systems. Since then,
there have been numerous examples constructed and whose representation theory studied,
especially in the setting of quantized universal enveloping algebras. Even in the operator al-
gebraic setting, the recent developments in quantum isometry groups (Bhowmick, Goswami)
are in this direction.

In another direction, consider an abelian locally compact group G. Then it is known that
the set of continuous characters on G can be also given an abelian locally compact group

structure, written Ĝ. The famous Pontryagin duality says that
ˆ̂
G, the “bidual” of G, is

canonically isomorphic to G. This means the the category of abelian locally compact groups
is “self-dual”. However, when one tries to generalize the duality to non-abelian groups,
one runs into serious difficulties. It is of note that there have been some duality results
obtained over the years (for instance, the Tannaka–Krein duality, where one considers the
set of equivalence classes of irreducible representations as the dual object), but none of them
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were quite satisfactory because any reasonable notion of the dual object of a group is no
longer a group.

So it has been an interesting problem ever since to look for a self-dual category that
includes all locally compact groups. A nice answer was given by Kac, Vainerman and Enock,
Schwartz, which is now called the theory of Kac algebras . In can be said that the Kac algebra
theory was the first topological theory of quantum groups. However, with the discovery of
the quantum SU(2) group, which cannot be obtained as a Kac algebra, and the development
of compact quantum groups by Woronowicz, it became clear that we needed an even larger
category that would unify compact quantum groups and Kac algebras (including all locally
compact groups). With the generalized Pontryagin duality result proved by Kustermans and
Vaes, the category of locally compact quantum groups satisfied this endeavor.

In this chapter, we will discuss a little about this duality aspect of the quantum groups. We
do not plan to say much about the quantum symmetry aspect. Instead, we wish to introduce
the recent (still being developed) notion of quantum groupoids . Groupoid category is known
to contain groups, group actions, equivalence relations, etc., and the hope is that the category
of quantum groupoids would provide a nice perspective on quantum groups as well as the
actions of the quantum groups.

3.1 Generalized Pontryagin duality

Let us first review some known cases ...

(1). [Pontryagin duality theorem for LCA groups]: Suppose G is a locally compact abelian
(LCA) group, with Haar measure. Then let

Ĝ = (all irred. unitary rep.s) = (all continuous, T-valued “characters”)

=
{
ξ : G→ T, ξ(st) = ξ(s)ξ(t)

}
.

By Gelfand theory, it is known that

Ĝ ∼= M
(
L1(G), ∗

)
=
(
multiplicative linear functionals on L1(G)

)
⊆ L∞(G),

with the weak-∗ topology, and with the convolution product. In fact, for ξ ∈ Ĝ, we have:
χξ ∈ M

(
L1(G), ∗

)
, such that

χξ : L1 3 f 7→ χξ(f) =

∫
f(x)ξ(x) dx, χξ(f ∗ g) = χξ(f)χξ(g).

Meanwhile, Ĝ with its topology becomes also a LCA group, and the Pontryagin duality

holds:
ˆ̂
G ∼= G. This means that the category of LCA groups is a “self-dual” category”.

[Examples]: T̂ ∼= Z, Ẑ ∼= T, R̂ ∼= R.

(*). However, as noted earlier, given an arbitrary locally compact group G, its dual object,
Ĝ = (all irred. unitary rep.s), is in general not a group!
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(2). [The Fourier transform]: One can define the Fourier transform, which is none other
than the Gelfand map F : L1(G) 3 f 7→ f̂ ∈ C0(Ĝ), where

f̂(ξ) =

∫
G

f(s)〈ξ, s〉 ds.

Here 〈ξ, s〉 = ξ(s) denotes the dual pairing, and λ 7→ λ̄ is the complex conjugation.

Following general results are known ...

• [Inverse F.T.]: There is a suitable Plancherel measure on Ĝ so that we can define:

h∨(s) =

∫
Ĝ

h(ξ)〈ξ, s〉 dξ.

• [Fourier inversion theorem]: (f̂)∨ = f .

• [Plancherel theorem]:
∥∥F(f)

∥∥
2

= ‖f‖2 . . . L2(G) ∼= L2(Ĝ).

• At the algebra level, F(f ∗ g) = F(f)F(g) . . . C∗(G) ∼= C0(Ĝ).

Clearly, the Fourier transform is naturally tied with the duality theory.

(3). [Duality of the (finite-dimensional) Hopf algebras]: Recall the definition of a Hopf
algebra, generalizing K(G), the space of functions on a finite group G. Given a Hopf algebra
(B,∆, ε, S), one can consider B∗ = (dual v.s. of B), and give it a Hopf algebra structure
(B∗, ∆̂, ε̂, Ŝ). For instance, via

〈a | f · g〉 = 〈∆̂a | f ⊗ g〉, 〈a⊗ b |∆f〉 = 〈a · b | f〉, . . .

It is easy to see that B∗∗ ∼= B.

(*) Duality picture is all right in this setting. But, we know that Hopf algebras are not really
satisfactory generalizations for groups!

[Remark]: Through (1), (2), (3), we saw that for a general (non-abelian) locally compact
group G, the dual Ĝ is no longer a group. So there is no Pontryagin duality and no Fourier
transform. Hopf algebras are useful and has nice duality theory, but not quite satisfactory.
Later, the notion of Kac algebras was introduced to combine groups and Hopf algebras, but
examples have been found that can be considered as reasonable generalizations of groups
(“quantum groups”) but not Kac algebras. All these indicated that we need a better frame-
work to develop the duality theory. This is among the main motivations for the theory of
locally compact quantum groups , where generalized Pontryagin duality holds.

In § 2.4.5, we saw that the generalized Pontryagin duality holds at the level of locally compact
quantum groups, and the duality is encoded by the multiplicative unitary operator W . If
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W ∈ B(H ⊗ H) is the multiplicative unitary associated with the (mutually dual) pair of
quantum groups (M,∆) and (M̂, ∆̂), we have:

M = A(W )
w

=
{
(id⊗ω)(W ) : ω ∈ B(H)∗

}w
,

together with the comultiplication ∆a = W ∗(1⊗ a)W . And,

M̂ = Â(W )
w

=
{
(θ ⊗ id)(W ) : θ ∈ B(H)∗

}w
,

with the comultiplication ∆̂b := ΣW (b⊗ 1)W ∗Σ.

[Dual pairing]: Obviously, M̂ 6= M∗. But we still have a “dual pairing” at the level of the
dense subalgebras A(W ) ⊆ M and Â(W ) ⊆ M̂ . Define, for a = (id⊗ω)(W ) ∈ A(W ) and
b = (θ ⊗ id)(W ) ∈ Â(W ), let

〈b | a〉 := (θ ⊗ ω)(W ) = θ(a) = ω(b).

Then: 〈b1b2 | a〉 =
〈
b1⊗b2 |∆(a)

〉
and 〈b | a1a2〉 =

〈
∆̂cop(b) | a1⊗a2

〉
, where a, a1, a2 ∈ A(W )

and b, b1, b2 ∈ Â(W ).

[Problems with the duality picture]: With the generalized Pontryagin duality at the LCQG
level and the (densely defined) dual pairing map, the duality picture is more or less complete.
But, there are still some improvements to be made. Among others, we point out here two
issues:

1. [Issue of the Fourier transform]: The dual pair of quantum groups, M and M̂ , are both
defined on the same Hilbert space H. Because of this, the Fourier transform is sort of
“hidden”. (Basically, we would be doing L2(G) ∼= L2(G), which makes the F.T. the
identity map.) Nevertheless, the F.T. should be there. We just need to approach it
properly.

2. [Issue with the dual pairing]: Unlike in the Hopf algebra case, there is no way of
constructing a dual object of a W ∗-bialgebra (M,∆), without resorting to the existence
of the Haar weight and the multiplicative unitary operator.

We will discuss Issue (1) in § 3.2 below. We will not discuss Issue (2) in much detail, but let
us consider the following example.

[A problem concerning Issue (2)]: Consider a locally compact quantum group (A,∆), to-
gether with the Haar weights. In some cases, we can find a certain “cocycle” σ such that we
can “twist” (or deform) the comultiplication (e.g. δ = σ ◦∆). A natural question is to see
if we can construct a “twisted Â”, via

〈b×σ d | a〉 =
〈
b⊗ d | δ(a)

〉
,

where a ∈ A and b, d ∈ Â. For finite-dimensional Hopf algebras or quantum groups in the
algebraic framework, this is do-able. But, in our “topological” case, things are not so easy.
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Among the obstacles is that while the new map δ is still coassociative (so a valid comultipli-
cation), it may as well happen that δ never determines a quantum group. That is, no Haar
weights, and therefore no practical way of working with the dual pairing.

[Example] (Twisting of the quantum double): For A = C∗(G), consider AD = Âop on A =
C0(G) oα G, where α : G×G→ G is the conjugation: αz(s) = zsz−1. To see its structure,
consider F ∈ Cc(G×G) and ξ ∈ L2(G×G), define:

LF ξ(s, t) =

∫
F (s, z)ξ(z−1sz, z−1t) dz “αz(s) = zsz−1”

F ∗(s, t) = F (t−1st, t−1)

As a C∗-algebra, we have: AD = L
(
Cc(G×G)

)‖ ‖op
. It has the Hopf structure, and the

Haar weight:

(∆DF )ξ(s1, t1; s2, t2) =

∫
F (s1s2, z)ξ(z

−1s1z, z
−1t1; z

−1s2z, z
−1t2) dz.(

SD(F )
)
(s, t) = F (t−1st, t−1)

ϕD(F ) =

∫
F (s, 1G) ds

In fact, AD = C0(G) oα G is a C∗-algebraic locally compact quantum group, which is
non-commutative and non-cocommutative. This is a version of Drinfeld’s quantum double
construction. Its dual is ÂD = A⊗ Â.

Using a certain element R ∈M(AD ⊗AD) (satisfying the “quantum Yang–Baxter equa-
tion”: R12R13R23 = R23R13R12), we can deform the comultiplication: δ = R◦∆D. Consider

the following question (Q.): Can we construct a “twisted ÂD”?
Since (AD, δ) is no longer a quantum group, we do not have any multiplicative unitary

operator to work with, and no general method is known. On the other hand, since the
situation comes from an ordinary group, we do have an answer in this particular case, and
we can actually construct a C∗-algebra that would be considered as having a product dual
to δ, giving us the “twisted ÂD”. In turns out that

(“twisted ÂD”) ∼=
[
(1⊗ Âop)∆(A)

] ∼= C0(G) oτ G ∼= K
(
L2(G)

)
,

where τ is the translation. Conceptually, it is based on the strategy that 〈b | a〉 = 〈b⊗a|WR〉,
but WR is not a multiplicative unitary operator.

(*) This result was not surprising, because similar results have been found in the Hopf
algebra case (Lu, obtaining ∼= End(H)), and in the algebraic framework of multiplier Hopf
algebras (Delvaux, Van Daele). However, the result “

[
(1 ⊗ Âop)∆(A)

]
” in the general case

is not known whether it is true. If this result were indeed true, we may obtain in this way
some highly-nontrivial C∗-algebras.
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3.2 Fourier transform on locally compact quantum groups

Note that From the Fourier inversion theorem, (f̂)∨ = f , we have:

f(x) = (f̂)∨(x) =

∫ ∫
f(z)〈ξ, z〉〈ξ, x〉 dzdξ.

This implies that:
∫
〈ξ, z〉〈ξ, x〉 dξ = δ0(z − x). Therefore, for a ∈ Cc(G) and k ∈ Cc(G), we

may consider: 〈
â | k

〉
:=

∫
â(ξ)χξ(k) dξ =

∫
â(ξ)k(x)〈ξ, x〉 dξdx

=

∫
k(x)a(z)〈ξ, z〉〈ξ, x〉 dzdξdx =

∫
k(x)a(x) dx.

The computation suggests that
〈
F(a) | c

〉
= ϕ(ca) or “F(a) = ϕ(· a)”.

The question is whether we can still push further and re-formulate “F(a) = ϕ(· a)”, in
the setting of locally compact quantum groups. In the algebraic setting (“multiplier Hopf
algebras”), Van Daele has achieved results in this direction. Our plan is to re-formulate this
approach at the level of operator algebras.

Consider quantum groups (M,∆, ϕ, ψ) and (M̂, ∆̂, ϕ̂, ψ̂) on H, together with the multiplica-
tive unitary operator W . In addition, let Λ denote the GNS map for the weight ϕ on H.
And, let Λ̂ be the GNS map for the weight ϕ̂ on H. Recall also the duality provided by W ,
at the level of the dense subalgebras A(W ) (⊆M) and Â(W ) (⊆ M̂).

[Definition] (Kahng): Taking motivation from “F(a) = ϕ(· a)” or “
〈
F(a) | c

〉
= ϕ(ca)”, we

will define the Fourier transform of a, by

F(a) := (ϕ⊗ id)
(
W (a⊗ 1)

)
.

(*) Note that formally, we have: F(a) = (θ ⊗ id)(W ) ∈ Â, where θ = ϕ(· a). But we still
need to clarify where F is defined ...

Consider the (dense) subset J (⊆M), where

J =
{
(id⊗ω)(W ∗), ω ∈ M̂∗ : ∃L ≥ 0 s.t. |ω(y∗)| ≤ L‖Λ̂(y)‖,∀y ∈ Nϕ̂

}
.

It is known that J forms a core for the GNS map Λ. Similarly, consider the (dense) subset
Ĵ (⊆ M̂), where

Ĵ =
{
(θ ⊗ id)(W ), θ ∈M∗ : ∃L ≥ 0 s.t. |θ(x∗)| ≤ L‖Λ(x)‖,∀x ∈ Nϕ

}
.

As in the above, it is known that Ĵ forms a core for the GNS map Λ̂.
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[Remark]: Loosely speaking, these are the spaces where the Fourier transform (and the
inverse Fourier transform) would be defined. Note also that using the notation given earlier in
§ 2.4.5, we have (id⊗ω)(W ∗) ∈ J if and only if ω ∈ Î, and similarly, we have (θ⊗id)(W ) ∈ Ĵ
if and only if θ ∈ I.

[Some technical comments]: Let a ∈ J . Then for any x ∈ Nϕ, we have:∣∣ϕ(x∗a)
∣∣ =

∣∣〈Λ(a),Λ(x)〉
∣∣ ≤ L

∥∥Λ(x)
∥∥,

where L =
∥∥Λ(a)

∥∥. There is still the issue of whether the map θ : x 7→ ϕ(xa) is normal
(θ ∈M∗), but this does work for elements contained in a certain dense subset of J . [Consider
the elements in the “Tomita algebra”.] In that case, we would have: (θ ⊗ id)(W ) ∈ Ĵ . In
other words,

a 7→ F(a) = (ϕ⊗ id)
(
W (a⊗ 1)

)
= (θ ⊗ id)(W ) ∈ Ĵ (⊆ M̂).

As a by-product, we also have:
〈
Λ̂
(
(F(a)

)
,Λ(x)

〉
= θ(x∗) = ϕ(x∗a) =

〈
Λ(a),Λ(x)

〉
, true for

any x ∈ Nϕ. Since the vectors of the form Λ(x), x ∈ Nϕ, are dense in H, it follows that

Λ̂
(
F(a)

)
= Λ(a) in the Hilbert space H.

Similarly, there is a dense subset of Ĵ (⊆ M̂) so that for an element b contained in the set,
we can define F−1(b) ∈ J (⊆M), by

F−1(b) := (id⊗ϕ̂)
(
W ∗(1⊗ b)

)
,

which is the inverse Fourier transform. As before, we have:
〈
Λ
(
F−1(b)

)
, Λ̂(y)

〉
=〈

Λ̂(b), Λ̂(y)
〉
, for any y ∈ Nϕ̂. Since the vectors of the form Λ̂(y), y ∈ Nϕ̂, are dense in

H, this also means that Λ
(
F−1(b)

)
= Λ̂(b) in the Hilbert space H.

[Side remark]: The dense subset of J that is mentioned above is slightly smaller than (but
dense in) the set L(−1/2) considered by Caspers. He recently formulated a definition of a
“Lp-Fourier transform” (for 1 ≤ p ≤ 2) on locally compact quantum groups. Our case would
be, of course, the L2-Fourier transform.

[The Fourier Inversion Theorem]:

• For a ∈ J , we have: F−1
(
F(a)

)
= a.

• For b ∈ Ĵ , we have: F
(
F−1(b)

)
= b.

[Proof]: Use Λ
(
F−1(F(a))

)
= Λ̂

(
F(a)

)
= Λ(a).

[Plancherel Theorem]:

• For a ∈ J (⊆M), we have: ϕ̂
(
F(a)∗F(a)

)
= ϕ(a∗a).

• For b ∈ Ĵ (⊆ M̂), we have: ϕ
(
F−1(b)∗F−1(b)

)
= ϕ̂(b∗b).

[Proof]: Note that ϕ̂
(
F(a)∗F(a)

)
=
〈
Λ̂(F(a)), Λ̂(F(a))

〉
=
〈
Λ(a),Λ(a)

〉
= ϕ(a∗a).
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[Convolution products on M and M̂ ]: For a, c ∈ J (⊆M), we may define their “convolution
product”, as follows:

a ∗ c := F−1
(
F(a)F(c)

)
.

Then we have: a ∗ c = (ϕ⊗ id)
(
[(S−1 ⊗ id)(∆c)](a⊗ 1)

)
. Similarly, for b, d ∈ Ĵ (⊆ M̂), we

define their “convolution product”, as follows:

b ∗ d := F
(
F−1(b)F−1(d)

)
.

Then we have: b ∗ d = (ϕ̂⊗ id)
(
[(Ŝ−1 ⊗ id)(∆̂d)](b⊗ 1)

)
.

[The dual pairing]: The dual pairing map 〈 | 〉 : Â(W ) ×A(W ) → C, as given earlier, has
the following alternative description:

〈b | a〉 = ϕ
(
aF−1(b)

)
= ϕ̂

(
F(a∗)∗b

)
= (ϕ⊗ ϕ̂)

[
(a⊗ 1)W ∗(1⊗ b)

]
.

For this to be valid, we need to restrict 〈 | 〉 to an appropriate domain. Even so, this
provides a more direct way of evaluating the dual pairing map, unlike the earlier definition.

[Case of an ordinary group G]: Let us see how all these are manifested in the case of an
ordinary locally compact group G, with a fixed left Haar measure, dx. Let H be the Hilbert
space L2(G). Consider two well-known von Neumann algebras:

• M = L∞(G), where a ∈ L∞(G) is viewed as the multiplication operator πa on H =
L2(G), by πaξ(x) = a(x)ξ(x).

• M̂ = L(G), given by the left regular representation. That is, for b ∈ Cc(G), let
Lb ∈ B(H) be such that Lbξ(x) =

∫
G
b(z)ξ(z−1x) dz. We take L(G) as the W ∗-closure

of L
(
Cc(G)

)
.

As we have seen earlier, these two von Neumann algebras can be given (mutually dual)
quantum group structures, whose comultiplication maps are determined by the multiplicative
unitary operator W ∈ B

(
L2(G×G)

)
, where Wξ(s, t) = ξ(s, s−1t).

In this case, our Fourier transform takes the following form:

• For a ∈ Cc(G), we have: πa ∈M and F(πa) = La ∈ M̂ .

• For b ∈ Cc(G), we have: Lb ∈ M̂ and F−1(Lb) = πb ∈M .

[Remark]: At the level of functions, the Fourier transform would give us F : a(x) −→ a(x),
and so the Fourier transform would look trivial. This is because we viewed both M and M̂
as defined on the same Hilbert space: L2(G) = L2(G). For a better perspective, consider
an abelian group G and Ĝ its dual group. By classical Fourier theory, we actually have the
spatial isomorphism F : L2(G) ∼= L2(Ĝ). Then we can show easily that La = F−1πâF , for
a ∈ Cc(G). [Here, â ∈ C0(Ĝ) is the (classical) Fourier transform of a, and πâ ∈ B

(
L2(Ĝ)

)
.]
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We thus have: F(πa) ∼= πâ. Or, at the function level: Cc(G) 3 a(x) 7→ â(p) ∈ C0(Ĝ). In
addition, we have:

(a ∗ c)(x) =

∫
a(s)c(s−1x) ds

and

〈Lb |πa〉 =

∫
a(x)b(x) dx,

as expected. These observations show that our definition of the Fourier transform at the
level of quantum groups is a reasonable generalization of the classical notion.

[Final remarks]: At this stage, however, the Fourier transform theory is rather primitive. The
definition is now clarified, but not much else, unfortunately. The hope is that with more
development, it could be useful in enhanced understanding of the general duality picture at
the quantum group level.

From a different point of view, there is a sense that the Fourier transform should provide a
certain generalization of the direct integral of the irreducible representations. By considering
the “matrix coefficients” of the representations, we may gain some insights on q-special
function theory. Meanwhile, having the alternative description of the dual pairing should be
also useful when working with specific examples.

3.3 Quantum groupoids

An important aspect of groups is that they are often considered in terms of symmetries of a
set. But then, these symmetries are defined on the whole of the set. In many situations, how-
ever, the important “symmetry” is not the one associated with globally defined bijections. In
general, the algebraic structure characterizing symmetry (even including non-homogeneous
symmetry) is provided by groupoids . The category of groupoids include as special cases
groups, group actions, equivalence classes, and more. Therefore, it is natural to ask if we
can consider a notion of a “quantum groupoid”, similar to the notion of a “quantum group”
to a group.

There are other motivations for studying quantum groupoids. One such is from the
theory of subfactors, where one wishes to describe the symmetries of a given subfactor. To
see this, suppose a group G acts on a factor N . We then obtain two inclusions of factors
NG ⊂ N ⊂ N oG, where NG is the fixed point algebra, and N oG is the crossed product.
The subfactor NG ⊂ N is irreducible and of depth 2. Then it is a natural question to ask
whether all irreducible, depth 2 subfactors are of this form. The answer is no, but Enock
and Nest showed that for every irreducible depth 2 inclusion N0 ⊂ N1, there exists a locally
compact quantum group M and an action of M on N1 such that N0 is equal to the fixed point
algebra NM

1 , and the inclusion N1 ⊂ N2 given by the “basic construction” is isomorphic to
the inclusion N1 ⊂ N1 oM . If the irreducibility assumption is dropped, then M is no longer
a quantum group but shown to be a quantum groupoid (Enock, Vallin). We can see that
quantum groupoids arise naturally in the study of subfactors.
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3.3.1 Definition of a groupoid

Before trying to talk about quantum groupoids, we should review a little about ordinary
groupoids. By definition, a groupoid is a small category with inverses. In terms of algebra,
a groupoid can be regarded intuitively as a set with a partially defined multiplications for
which the usual properties of a group hold whenever they make sense. See below:

[Definition]: A set G is called a groupoid over a set X, if it is equipped with the following
structure maps:

1. A pair of maps r : G → X and s : G → X, called the range and the source map. In a
sense, an element g ∈ G may be thought of as an arrow (morphism) from s(g) to r(g).

2. A (partial) multiplication m : G(2) → G, where G(2) is the set of composable pairs:
G(2) =

{
(g, h) ∈ G × G : s(g) = r(h)

}
. it is customary to write m(g, h) as gh. The

multiplication map must have the associativity property. That is, (gh)k = g(hk), when
s(g) = r(h), s(h) = r(k).

3. An embedding map ε : X → G, called the identity section, such that ε
(
r(g)

)
g = g =

gε
(
s(g)

)
. Note that r

(
ε(x)

)
= x and s

(
ε(x)

)
= x, for any x ∈ X.

4. There is also an inversion map ι : G → G, usually denoted by ι(g) = g−1, such that
for all g ∈ G, we have: g−1g = ε

(
s(g)

)
and gg−1 = ε

(
r(g)

)
.

Often, we write the base space X as X = G(0). Among the more important examples of
groupoids include: equivalence relations, “transformation groupoid” (coming from a group
acting on a set), “fundamental groupoid”, etc.

By a topological groupoid , we mean a groupoid equipped with a topology on its set of
arrows, for which the inversion and the multiplication are continuous. Then also the range
and source map are continuous. Incorporating the smooth structure, one can also consider
Lie groupoids . Here, the maps r and s are further required to be surjective submersions, and
the map ε and the partial multiplication are smooth.

Let G be a topological groupoid that is locally compact, Hausdorff, and second countable.
To perform translation-invariant integration on G, we need an analogue of the Haar measure
of a locally compact group. The precise definition involves the fibers of the range and the
source map, and we can define a Haar system. Using this, one can construct a groupoid
C∗-algebra, based on convolution product (Renault).

3.3.2 Deformation quantization revisited

In noncommutative geometry, groupoids play a significant role as candidates for noncommutative
locally compact spaces and manifolds, and produce the C∗-algebras normally regarded as
“noncommutative spaces”. Examples include Connes’ foliation algebras. Through groupoids,
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the noncommutative geometric context provides the algebra of observables of a quantum me-
chanical system. Similarly, deformation quantization is often naturally interpreted in terms
of the “gauge groupoid” or the “tangent groupoid” of Connes (see below). In addition, Lie
groupoids and Lie algebroids play a useful role in the study of Poisson manifolds.

[Definition (Connes’ tangent groupoid)]: Let M be a manifold. From N = M ×M and an
immersion M ↪→M×M , x 7→ (x, x), one can define: GM :=

(
{0}×TM

)
∪
(
(0, 1]×(M×M)

)
,

which is a smooth manifold with boundary. We can give GM a Lie groupoid structure over
the base space G(0)

M = [0, 1]×M , in the following way:

• The fiber at ~ = 0 is TM , the tangent bundle, which is a groupoid over M under the
canonical bundle projection and addition in each TxM .

• The fiber at any ~ ∈ (0, 1] is the “pair groupoid” M ×M over M .

The total space GM is a groupoid with respect to fiberwise operations. Then GM is called the
tangent groupoid of M . There is a natural way to associate a groupoid C∗-algebra C∗(GM),
and it turns out that it is the section algebra of a continuous field of C∗-algebras over [0, 1].
The fiber algebras are: A~=0 = C0

(
T ∗M) at ~ = 0, and A~ = K

(
L2(M)

)
, for ~ ∈ (0, 1].

(*). The definition of a tangent groupoid is actually more general. What we gave above is
a special case corresponding to the immersion M ↪→M ×M .

[Tangent groupoid as providing a deformation quantization framework]: It is known that the
cotangent bundle T ∗M over a manifold M is equipped with a canonical Poisson structure,
called a “linear Poisson structure”. By using the framework of Connes’ tangent groupoid,
Landsman and Ramazan could give a deformation quantization of this Poisson structure.
In addition to observing that A~=0 = C0

(
T ∗M) and A~ = K

(
L2(M)

)
, they also needed to

show an appropriate “correspondence relation” at the level of a dense subspace of functions
in C0(T

∗M). This example does not belong to Rieffel’s strict deformation quantization
framework, so they modified Rieffel’s definition a little to introduce the notion of “strict
quanization”.

This result suggests that for certain types of Poisson manifolds, one may be able to use
some version of Connes’ tangent groupoid and a relaxed version of Rieffel’s framework to
carry out deformation quantization in the C∗-algebras setting. Not much work has been
done in this direction, however.

[A possible future project]: In the work of Landsman and Ramazan, a key point is that the
manifold T ∗M can be viewed as a dual of certain Lie bialgebroid, thereby obtaining a linear
Poisson structure. This is more or less the same in principle to case (3) considered in § 1.3.
It will be interesting to see if we can introduce a suitable cocycle perturbation to the linear
Poisson structure such that a strategy similar to case (4) of § 1.3 could be applied. It is likely
that one needs a quantum groupoid framework to work this out.
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3.3.3 Weak Hopf algebras and quantum groupoids

Now that we reviewed the notion of a groupoid and gave some motivations for studying
“quantum groupoids”, we will give some report on the definitions being proposed and some
results. Considering the technical difficulties, we will be brief, mentioning an algebraic frame-
work (weak multiplier Hopf algebras) and a von Neumann algebraic framework (measured
quantum groupoids). The C∗-algebraic framework is currently not developed yet.

Let us begin with the definition of a multiplier Hopf algebra by Van Daele, which we referred
to earlier. In the below M(A) denotes the multiplier algebra of an algebra A, which is unital
and contains A as an ideal. Even though A is not necessarily a C∗-algebra, the definition of
M(A) is more or less the same as in the C∗-algebra setting.

[Definition]: Let A be an algebra with a non-degenerate product (i. e. for every a ∈ A, a 6= 0,
we have ab 6= 0 and ba 6= 0 for all b ∈ A), while the linear span of AA is equal to A.
A multiplier bialgebra is a non-degenerate algebra A equipped with a non-degenerate homo-
morphism ∆ : A→M(A⊗ A) such that

• the following subsets of M(A⊗ A) are contained in A⊗ A ⊆M(A⊗ A):

∆(A)(1⊗ A), ∆(A)(A⊗ 1), (A⊗ 1)∆(A), (1⊗ A)∆(A).

• ∆ is coassociative: (id⊗∆)∆ = (∆⊗ id)∆.

In addition, if the linear maps T1 and T2, defined by

T1(a⊗ b) = ∆(a)(1⊗ b) and T2(a⊗ b) = (a⊗ 1)∆(b)

are bijective maps from A ⊗ A to A ⊗ A, then (A,∆) is called a multiplier Hopf algebra.
A multiplier Hopf algebra (A,∆) is “regular”, if (Aop,∆) and (A,∆cop) are also multiplier
Hopf algebras.

[Remark]: Every Hopf algebra is a multiplier Hopf algebra, and multiplier Hopf algebras are
similar to Hopf algebras in many respects. For instance, they also possess a counit and an
antipode. By incorporating an involution, we can also consider the notion of a “multiplier
Hopf ∗-algebra”. As a natural analogue of the Haar weight of a locally compact group, one
can introduce the concept of a left and right “integral” on a multiplier Hopf algebra. They
are fundamental to the duality theory of multiplier Hopf algebras.

A multiplier Hopf ∗-algebra with a positive left integral and a positive right integral
is called an algebraic quantum group. Intuitively speaking, it may be considered as
a “quantized Cc(G)” of a locally compact group G. Even though this remains a purely
algebraic theory, it is remarkable to note that the framework of multiplier Hopf algebras and
algebraic quantum groups essentially contain compact quantum groups, discrete quantum
groups, and much more. Nowadays, this theory would be contained in the theory of locally
compact quantum groups. However, it was this theory that led to the development of the
Kustermans–Vaes framework of locally compact quantum groups, and due to the fact that
this is technically simpler, it still remains an important and active area of research.
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Next we turn to the definition of a weak multiplier Hopf algebra (Van Daele), modeled after
the notion of a groupoid. In this setting, the comultiplication map ∆ is not “unital”, and the
canonical maps T1, T2 are no longer assumed to be bijective. To avoid being too technical,
we will skip some details.

[Definition]: A pair (A,∆) is a weak multiplier Hopf algebra, if

• A is an idempotent algebra (i. e. AA = A) with a non-degenerate product

• ∆ : A→M(A⊗ A) is “full” coproduct with a (unique) counit ε

• There is an idempotent element E ∈M(A⊗ A) such that

∆(A)(1⊗ A) = E(A⊗ A) and (A⊗ 1)∆(A) = (A⊗ A)E

and also (∆⊗ id)E = (E ⊗ 1)(1⊗ E) = (1⊗ E)(E ⊗ 1).

• The kernels of the canonical maps are also determined by E in a certain way.

[Remark]: In the definition, the element E is actually the smallest idempotent so that
E∆(a) = ∆(a)E = ∆(a) for all a ∈ A. And, there is a unique extension of ∆ satisfying

∆(1) = E, and similarly, (∆⊗ id)(1) = E ⊗ 1, (id⊗∆)(1) = 1⊗ E.

As a consequence of the definition, there exists a unique antipode S giving “generalized
inverses” of the canonical maps. It is a linear map from A to M(A) and it is both an
anti-algebra and an anti-coalgebra map.

[Example]: Let G be a groupoid and let A be the algebra K(G) of complex functions on G
with finite support. For f ∈ K(G), define:

∆(f)(p, q) := f(p, q), if (p, q) ∈ G(2), ∆(f)(p, q) = 0, otherwise.

Then (A,∆) is a regular weak multiplier Hopf algebra. The idempotent E is given by
the function that is 1 on (p, q) ∈ G(2) and 0 on other pairs. The antipode is given by
S(f)(p) = f(p−1).

[Example]: Other non-trivial examples exist. In particular, any finite-dimensional weak Hopf
algebra (in the sense of Böhm, Nill, Szlachányi) is a regular weak multiplier Hopf algebra.

Suppose (A,∆) is a regular multiplier Hopf algebra. Then one can define the source and
range algebras by

As =
{
y ∈M(A) : ∆(y) = E(1⊗ y)

}
, Ar =

{
x ∈M(A) : ∆(x) = (x⊗ 1)E

}
.

From this data and using the antipode map, one can define the source and range maps.
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One can also introduce the notion of “left integrals” and “right integrals”, although there
is no longer uniqueness result. With some extra requirements, one can consider the notion
of a algebraic quantum groupoid, at which level a nice duality theorem holds. There is
a hope that this framework would provide us a way to formulate a C∗-algebraic notion of a
quantum groupoid.

[Measured quantum groupoids]: Motivated by the theory of (von Neumann algebraic) locally
compact quantum groups by Kustermans–Vaes, and by modeling L∞(G, µ), Enock, Vallin,
Lesieur, ... have developed the theory of measured quantum groupoids, in the von
Neumann algebra setting. The theory is quite technical, so we will not attempt to explain
it here. However, here are a few aspects of the theory:

• A very important technical tool is the notion of the Connes–Sauvageot relative tensor
product : One starts from a von Neumann algebra N and Hilbert spaces H and K
with an antirepresentation and a representation of N , respectively, and produces a
new Hilbert space H⊗NK by factoring out the actions of N on H and K. The precise
construction is rather complicated, and needs to work with a f.n.s. weight on N .

• We also need the notion of fiber product : Let M1 and M2 be von Neumann algebras
on Hilbert spaces H1 and H2, respectively, such that M1 is a right N -module and M2

is a left N -module for a von Neumann algebra N . The Hilbert spaces H1 and H2

have natural N -module structures so that one can form the relative tensor product
H1 ⊗N H2. The fiber product of M1 and M2, denoted by M1

∗
NM2, is a certain von

Neumann algebra contained in B(H1 ⊗N H2).

• A Hopf-von Neumann bimodule consists of a von Neumann algebra M , a von Neumann
algebra N (the base), with a representation and an antirepresentation r, s : N → M
(the range map and the source map), and the comultiplication ∆ : M → Ms

∗
N rM ,

being mapped into the fiber product. The maps satisfy:

1. r, s,∆ are normal, injective, unital

2. ∆
(
s(x)

)
= 1 ⊗

N s(x) and ∆
(
r(x)

)
= r(x) ⊗N 1 for all x ∈ N

3. ∆ is coassociative, in the sense that (∆ ∗
N idM) ◦ ∆ = (idM

∗
N ∆) ◦ ∆ as maps

M →Ms
∗
N rMs

∗
N rM .

• A Hopf-von Neumann bimodule (M,N, r, s,∆) is a measured quantum groupoid
if there exist a left invariant and a right invariant operator valued weights T and T ′

from M on s(N) and r(N) respectively, together with a certain weight ν on N , which
is relatively invariant with respect to T and T ′.

• A nice duality picture exists in this setting.

• Examples include locally compact groupoids, and inclusions of factors. And, under
some assumptions, one can consider matched pair of groupoids.
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• The concept of pseudo-multiplicative unitary operators can be considered, and as in the
quantum group theory, they play a similar fundamental role in the theory of measured
quantum groupoids.

• The relationship between the framework of weak multiplier Hopf algebras (or algebraic
quantum groupoids) and the framework of measured quantum groupoid is not yet
completely clarified, but it is expected that one can pass from one to the other.
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