
CALCULATING THE IHARA-ZETA FUNCTION FOR PSL(2,Z2n)

CASEY GREEN, ELIZABETH WICKS AND STRATOS PRASSIDIS

Abstract. We are interested in calculating the Ihara-Zeta Function (IZF) for PSL(2,Z). Our first

approach to this problem was to compute the IZF for PSL(2,Z)/Γ2n for small n, find a formula

to obtain the IZF for all n, and take the limit as n → ∞. It is a fact that PSL(2,Z)/Γ2n
∼=

PSL(2,Z2n), where Γ2n = ker(PSL(2,Z) → PSL(2,Z2n)). Hence, we calculated the IZF for

PSL(2,Z2n) instead. As we went through this process, we were unable to come up with a concrete

formula for the IZF for PSL(2,Z). However, we developed an algorithm for calculating the IZF for

PSL(2,Z2n). Calculating the function in this manner necessitates a computer with high computa-

tional capabilities, but it can be done for any n. In this paper, we will describe our algorithm and

prove that it works for all n.

1. Preliminaries

Let p : V (G ×φ Γ̂2n) → V (G) be a regular covering, where V (G) are the vertices of a graph

G. Here, we will take our base graph G to be the Cayley graph of PSL(2,Z2) and our covering

graph G ×φ Γ̂2n to be the Cayley graph of PSL(2,Z2n). Then Γ̂2n = 〈φ(e)|e ∈ E(~G)〉 is the

group generated by the voltage assignments φ(e), where E(~G) are the directed edges of G and

φ(e) ∈ Aut(G). The voltage assignment φ(e) satisfies the property that φ(e)−1 = φ(e−1). Voltage

assignments are defined for a particular lifting of V (G) onto V (G×φ Γ̂2n). Here G has 6 vertices.

To choose a lifting, pick 6 elements in PSL(2,Z2n) that become the 6 elements of PSL(2,Z2) under

arithmetic modulo 2. Let u and v be the vertices that p(u) and p(v) were lifted to. Then for an

edge e = uv connecting u, v ∈ V (G ×φ Γ̂2n), if p(u) ∼ p(v) ⇒ u ∼ v then φ(uv) = I, the identity

automorphism. Now suppose p(u) ∼ p(v) ⇒ u 6∼ v. Since a covering implies a bijective function

from N(u) → N(p(u)), there must exist x ∈ N(u) such that p(x) = p(v). By the regularity of

the covering, ∃γ ∈ Aut(G) such that γx = v. This γ is our φ(uv). In our case, all φ(e) are 2 × 2

matrices that send elements from PSL(2,Z2n) to the elements in PSL(2,Z2n) that become the

same matrix under arithmetic modulo 2.

2. Description of Our Algorithm

We will refer to the six elements of PSL(2,Z2) as follows:{
1 =

(
1 0

0 1

)
, 2 =

(
1 0

1 1

)
, 3 =

(
0 1

1 1

)
, 4 =

(
1 1

0 1

)
, 5 =

(
1 1

1 0

)
, 6 =

(
0 1

1 0

)}
.
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We will use the following generating set for PSL(2,Z):

S =

{
S1 =

(
0 −1

1 0

)
, S2 =

(
1 −1

1 0

)
, S3 =

(
0 −1

1 −1

)}
.

First, we noticed that three of the elements in PSL(2,Z2) always appear in the cover PSL(2,Z2n)

for all n, so those elements can be lifted to themselves. Those elements are 1, 2, and 4. This

is because det(1) = det(2) = det(4) = 1, and PSL(2,Z2n) contains all 2 × 2 matrices J with

det(J) ≡ 1 mod 2n.

Next, the other three elements of PSL(2,Z2) can be mapped to our chosen generators of

PSL(2,Z2n) for all n. These liftings were obtained by multiplying 1,2, and 4 by the special

generator S1. Thus, 3 → S3, 5 → S2, and 6 → S1. This can be done for all n because

−1 ≡ (2n − 1) mod 2n, so the generators can be written with the −1 entries replaced by 2n − 1. It

is a fact that (2n− 1) ≡ 1 mod 2, so the generators under arithmetic modulo 2 become 3, 5, and 6

as desired.

3. Generating Γ̂2n with this Lifting

We have modified the following theorem to use for our purposes. This theorem gives the adjacency

matrix for a graph G×φ Γ̂2n that covers a base graph G. The general theorem and proof is available

on page 2 of [1].

Theorem 1. A(G×φ Γ̂2n) =
∑

γ∈Γ̂2n

A(~G(φ,γ))⊗ P (γ), where P (γ)ij =

{
1, if j = γi

0, otherwise
.

For a particular γ ∈ Γ̂2n , ~G(φ,γ) is the spanning subgraph of ~G consisting of all the vertices of

G and the directed edges with voltage assignment γ. The tensor product A ⊗ B is defined as the

matrix B with the element bij replaced by the matrix Abij .

In order to find Γ̂2n , it is necessary to draw a partial Cayley graph of PSL(2,Z2n) to find the

voltage assignments for the 6 vertices of the lifting.

Proposition 2. Using our lifting, we will always obtain the same partial Cayley graph, which is

shown in Figure 1.

Proof. It is easy to show by matrix multiplication that the adjacencies in the graph hold for any

n, because our method of lifting is independent of n. �

Proposition 3. From this partial Cayley graph and the labeling of Cay(PSL(2,Z2), S) in Figure

2,

Γ̂2n =

〈
φ(e−1

4 ) =

(
1 −2

2 −3

)
, φ(e4) =

(
−3 2

−2 1

)
, φ(e−1

5 ) =

(
1 2

0 1

)
,

φ(e5) =

(
1 −2

0 1

)
, φ(e−1

6 ) =

(
1 0

−2 1

)
, φ(e6) =

(
1 0

2 1

)〉
,
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and

φ(em) = φ(e−1
m ) =

(
1 0

0 1

)
,∀m ∈ {1, 2, 3, 7, 8, 9}.

Proof. We will show two examples of finding φ(e), which is independent of n. The rest of the proof

is left to the reader. In Figures 1 and 2, the colors represent which vertices correspond to each

other under the lifting. Solid colors in Fig. 1 represent the actual lifting (1 → 1, 2 → 2, 3 →
S3, 4 → 4, 5 → S2, and 6 → S1). Vertices with a border in Fig. 1 become the vertex in Fig.

2 of the same color under arithmetic modulo 2, but are not part of the lifting. This means that

two vertices with the same color are equivalent modulo 2, since we are using the Cayley graph of

PSL(2,Z2) as our base graph.

In order to find φ(e2), where e2 is the edge from 3→ 5 in Fig. 2, one must examine the lifting of

3 and 5. We know that 3→ S3 and 5→ S2. Because S3 ∼ S2 in Fig. 1, φ(e2) =

(
1 0

0 1

)
. Going

through this process for φ(em),∀m ∈ {1, 2, 3, 7, 8, 9} reveals that φ(em) is the identity matrix. By

the property φ(e)−1 = φ(e−1), it is true that φ(e−1
m ) = φ(em)−1 = φ(em).

Our next example is finding φ(e4). We have e4 going from 2 → 4. However, the lift of 2 is

not adjacent to the lift of 4 in Fig. 1. Therefore, there must exist x ∈ N(2) ⊂ V (PSL(2,Z2n))

such that p(x) = p(4) = 4 ∈ V (PSL(2,Z2)). This x =

(
1 7

2 7

)
, the orange-bordered vertex in

Fig. 1, since modulo 2 it becomes 4. Therefore, γx = 4, which implies that γ =

(
−3 2

−2 1

)
, where

γ = φ(e4). By our preliminary statements, φ(e−1
4 ) = γ−1 =

(
1 −2

2 −3

)
. �

4. Properties of Γ̂2n

Proposition 4. The elements of S(Γ̂2n), the generating set for Γ̂2n, have order 2n−1 for n ≥ 2.

Recall

S(Γ̂2n) =

{
φ(e−1

4 ) =

(
1 −2

2 −3

)
, φ(e4) =

(
−3 2

−2 1

)
, φ(e−1

5 ) =

(
1 2

0 1

)
,

φ(e5) =

(
1 −2

0 1

)
, φ(e−1

6 ) =

(
1 0

−2 1

)
, φ(e6) =

(
1 0

2 1

) }
.

Proof. We will prove this by induction. We will first show that(
a b

c d

)2n−1

≡

(
1 0

0 1

)
mod 2n.
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Base Case: (n = 2) Consider the element

(
1 −2

2 −3

)
of Γ̂4. We have:

(
1 −2

2 −3

)(
1 −2

2 −3

)
=

(
−3 4

−4 5

)
≡

(
1 0

0 1

)
mod 4.

The remaining elements are easy to verify.

Inductive Step: Assume that for all x ∈ S(Γ̂2n), (x2n−1
) mod 2n is the identity matrix for all n.

We want to show that for all y ∈ S(Γ̂2n+1), y2n mod 2n+1 is the identity matrix. Let

(
p q

r s

)
∈

S(Γ̂2n). From the inductive hypothesis, we know(
p q

r s

)2n−1

≡

(
1 0

0 1

)
mod 2n =

(
1 + 2na 2nb

2nc 1 + 2nd

)
,

where a, b, c, d, p, q, r, s ∈ Z. Squaring both sides we see that(
p q

r s

)2n

=

(
(1 + 2na)2 + 22nbc 2n+1b+ 22nab+ 22nbd

2n+1c+ 22nac+ 22ncd (1 + 2nd)2 + 22nbc

)
.

Consider the following fact:

2n = n+ 1 + n− 1⇒ 22n = 2n+1+n−1 = 2n+12n−1.

Now consider each entry individually:

(1 + 2na)2 + 22nbc = 1 + 2n+1a+ 22na2 + 22nbc

= 1 + 2n+1a+ 2n+12n−1a2 + 2n+12n−1bc

= 1 + 2n+1(a+ 2n−1a2 + 2n−1bc) ≡ 1 mod 2n+1.

2n+1b+ 22nab+ 22nbd = 2n+1b+ 2n+12n−1ab+ 2n+12n−1bd

= 2n+1(b+ 2n−1ab+ 2n−1bd) ≡ 0 mod 2n+1.

2n+1c+ 22nac+ 22ncd = 2n+1c+ 2n+12n−1ac+ 2n+12n−1cd

= 2n+1(c+ 2n−1ac+ 2n−1cd) ≡ 0 mod 2n+1.

(1 + 2nd)2 + 22nbc = 1 + 2n+1d+ 22nd2 + 22nbc

= 1 + 2n+1d+ 2n+12n−1d2 + 2n+12n−1bc

= 1 + 2n+1(d+ 2n−1d2 + 2n−1bc) ≡ 1 mod 2n+1.

⇒

(
p q

r s

)2n

≡

(
1 0

0 1

)
mod 2n+1.
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In order to complete our proof, we must show that for

(
a b

c d

)
∈ S(Γ̂2n),

(
a b

c d

)m
6≡

(
1 0

0 1

)
mod 2n, where m < 2n−1.

Base Case: (n = 2) The proof is matrix multiplication.

Inductive Step: Assume that for all n,(
a b

c d

)m
6≡

(
1 0

0 1

)
mod 2n,

where m < 2n−1. Then it is obvious that(
a b

c d

)m
6≡

(
1 0

0 1

)
mod 2n+1,

for m < 2n−1. We must show that this non-equivalency holds true for 2n−1 ≤ m < 2n. To this end,

we will prove that for non-negative integers k < 2n−1,(
a b

c d

)2n−1+k

6≡

(
1 0

0 1

)
mod 2n+1.

Lemma 5. For all n ∈ Z+,

φ(e−1
4 )n =

(
1 −2

2 −3

)n
=

(
(−1)n+1(2n− 1) (−1)n(2n)

(−1)n+1(2n) (−1)n(2n+ 1)

)
,

φ(e4)n =

(
−3 2

−2 1

)n
=

(
(−1)n(2n+ 1) (−1)n+1(2n)

(−1)n(2n) (−1)n+1(2n− 1)

)
,

φ(e−1
5 )n =

(
1 2

0 1

)n
=

(
1 2n

0 1

)
,

φ(e5)n =

(
1 −2

0 1

)n
=

(
1 −2n

0 1

)
,

φ(e−1
6 )n =

(
1 0

−2 1

)n
=

(
1 0

−2n 1

)
, and

φ(e6)n =

(
1 0

2 1

)n
=

(
1 0

2n 1

)
.

Proof. We will prove this lemma for φ(e−1
4 ). The n = 1 case is trivial. The rest of the proof follows

the same format as φ(e−1
4 ).
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Assume for induction that φ(e−1
4 )n =

(
(−1)n+1(2n− 1) (−1)n(2n)

(−1)n+1(2n) (−1)n(2n+ 1)

)
for all n. We must

show the following: (
1 −2

2 −3

)n+1

=

(
(−1)n(2n+ 1) (−1)n+1(2n+ 2)

(−1)n(2n+ 2) (−1)n+1(2n+ 3)

)
.

Multiply both sides of our inductive hypothesis on the right by φ(e−1
4 ) as follows:(

1 −2

2 −3

)n(
1 −2

2 −3

)
=

(
(−1)n+1(2n− 1) (−1)n(2n)

(−1)n+1(2n) (−1)n(2n+ 1)

)(
1 −2

2 −3

)

=

(
(−1)n+1(2n− 1) + (−1)n4n (−1)n+1(2n− 1)(−2) + (−1)n(−6n)

(−1)n+1(2n) + (−1)n(2(2n+ 1)) (−1)n+1(4n) + (−1)n(2n+ 1)(−3)

)

=

(
(−1)n(2n+ 1) (−1)n+1(2n+ 2)

(−1)n(2n+ 2) (−1)n+1(2n+ 3)

)
.

�

We know that each element of Γ̂2n is the identity matrix modulus 2n+1 after it is multiplied by

itself 2n times. We must show that each element of Γ̂2n does not equal the identity at some point

prior. We will prove this for φ(e−1
4 ). The other elements are left to the reader. Thus, our goal is

to show that for some k < 2n−1,(
1 −2

2 −3

)2n−1+k

6≡

(
1 0

0 1

)
mod 2n+1.

By Lemma 5, we have(
1 −2

2 −3

)2n−1+k

=

(
(−1)2n−1+k+1(2(2n−1 + k)− 1) (−1)2n−1+k(2(2n−1 + k))

(−1)2n−1+k+1(2(2n−1 + k)) (−1)2n−1+k(2(2n−1 + k) + 1)

)
.

Consider the second entry:

(−1)2n−1+k(2(2n−1 + k)) = (−1)2n−1+k(2n + 2k).

In order for this entry to be congruent to 0 mod 2n+1, it must be divisible by 2n+1. However,

upon closer inspection we see that

2k < 2n ⇒ 2n + 2k < 2n + 2n = 2n+1.

Thus,

(−1)2n−1+k(2n + 2k) < (−1)2n−1+k(2n+1)⇒ (−1)2n−1+k(2n + 2k) 6≡ 0 mod 2n+1.

Hence, (
1 −2

2 −3

)2n−1+k

6≡

(
1 0

0 1

)
mod 2n+1.

�
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Figure 1. Partial Cayley Graph of PSL(2,Z2n)

Figure 2. Cayley Graph of PSL(2,Z2)
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