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Definition of a (directed) Graph

A graph E = (E 0,E 1, r , s) consists of two countable sets

I E 0: vertices

I E 1: edges

I and functions r , s : E 1 → E 0 called range and source
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Definition of a C*-algebra

Let F be a field. A vector space A over F with a binary operation
A× A→ A (called multiplication) is an associative algebra over F
if ∀x , y ∈ A and ∀a, b ∈ F

I (x + y) · z = x · z + y · z
I x · (y + z) = x · y + x · z
I (ax) · (by) = (ab)(x · y)

I (x · y) · z = x · (y · z).



Definition of a C*-algebra

Let A be an associative algebra over C.
A norm on A is a map ‖ · ‖ : A→ R satisfying

I ‖v‖ ≥0 for all v ∈ A and v = 0 if and only if v = 0 in A

I ‖λv‖ = |λ|‖v‖ for all v ∈ A and all λ ∈ C
I ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v ,w ∈ A .

An involution on a complex algebra A is a real-linear map T 7→ T ∗

such that for all S ,T ∈ A and λ ∈ C , we have
T ∗∗ = T , (ST )∗ = T ∗S∗ , (λT )∗ = λ̄T ∗ .



Definition of a C*-algebra

A C*-algebra A is an associative algebra over C with a norm
a 7→ ‖a‖ and an involution a 7→ a∗, such that A is complete with
respect to the norm, and such that ‖ab‖ ≤ ‖a‖‖b‖ and
‖a∗a‖ = ‖a‖2 for every a, b ∈ A.



Examples of C*-algebras

In general a C*-algebra can be infinite dimensional. It is a theorem
(Gelfand-Naimark) that every C*-algebra is isomorphic to a sub
C*-algebra of B(H), the algebra of all bounded linear operators on
some Hilbert space H.

Our examples will be limited to finite dimensional case, and so our
C*-algebras can be thought of as Mn(C), with involution defined
as taking the conjugate transpose, and the norm being the
operator norm on matrices:

‖A‖op = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖=1

‖Ax‖.



Forming the C*-algebra of a graph

Let E be a row-finite directed graph. A Cuntz-Krieger
E-family {S ,P} on a hilbert space H consists of a set
{Pv : v ∈ E 0} of mutually orthogonal projections on H, and a
set {Se : e ∈ E 1} of partial isometries on H such that

I S∗e Se = Ps(e)∀e ∈ E 1; and
I Pv =

∑
{e∈E 1:r(e)=v} SeS

∗
e wherever v is not a source.

It is a theorem that for E there is a C*-algebra, C ∗(E )
generated by a Cuntz-Krieger E -family which has a universal
property. It is unique up to isomorphism and is called the
graph algebra of E .

Note: Since we are dealing only with finite-dimensional cases,
we will always have H ∼= Cn for some n.
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Example

E : a e // b

I Relations:
I S∗e Se = Pa

I Pb = SeS
∗
e

I Generators:

Pa =

(
1 0
0 0

)
, Pb =

(
0 0
0 1

)
, Se =

(
0 0
1 0

)
I C ∗(E ) = C ∗(Pa,Pb,Se) = M2(C).
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Products of graphs

E1 : u1

v1

E2 : u2
++v2 w2

ss

There are many ways of forming larger graphs given two smaller
graphs. Examples are:



Products of graphs

I union E1 ∪ E2 : u1

v1

u2
++v2 w2

ss

I tensor product
E1 × E2 : (u1, u2)
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(v1, u2) (v1, v2) (v1,w2)

I box (cartesian) product

E1�E2 : (u1, u2)
--

(u1, v2) (u1,w2)
qq

(v1, u2)
--

(v1, v2) (v1,w2)
qq



Products of graphs

The box product of E1 with E2 is the graph E1�E2 with vertex set
E 0

1 × E 0
2 , where for all (u1, u2), (v1, v2) ∈ E 0

1 × E 0
2 we define

(u1, u2) ∼ (v1, v2) if either one of the following holds :

I u1 = v1 in G1 and u2 ∼ v2 in G2,

I u2 = v2 in G2 and u1 ∼ v1 in G1.

E : a e // b , E�E : (a, a) //

��

(a, b)

��
(b, a) // (b, b)



C*-algebra of the box product

E : a e // b , E�E : w e //

g
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I Relations:
I S∗e Se = Pw = S∗g Sg

I S∗h Sh = Px = SeS
∗
e

I S∗f Sf = Py = SgS∗g
I Pz = Sf S

∗
f + ShS

∗
h

I We see that this requires a five-dimensional hilbert space, and
with calculations we find the graph algebra to be isomorphic
to M5(C).

I We have seen that C ∗(E ) ∼= M2(C), and so we see that
C ∗(E )⊗ C ∗(E ) = M4(C) 6∼= C ∗(E�E ).
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2-graphs

A category C consists of two classes C 0 of objects, and C ∗ of
morphisms, and two functions r , s : C ∗ → C 0, domain and
codomain, as well as a partially defined product (composition)
(f , g) 7→ f ◦ g from {(f , g) ∈ C ∗ × C ∗ : s(f ) = r(g)} to C ∗,
composition, and distinguished elements (identity morphisms)
{iv ∈ C ∗ : v ∈ C 0} satisfying

I r(fg) = r(f ) and s(fg) = s(g)

I (fg)h = f (gh) when s(f ) = r(g) and s(g) = r(h)

I r(iv ) = v = s(iv ) and iv f = f , giv = g when r(f ) = v and
s(g) = v .

A functor F : C → D is a pair of maps F 0 : C 0 → D0 and
F ∗ : C ∗ → D∗ which respect the domain and codomain maps and
composition, and which satisfy F ∗(iv ) = iF 0(v).



2-graphs
A rank 2 graph (or 2-graph) (Λ, d) is a countable category Λ,
together with a functor d : Λ→ N2, called the degree map, with
the following unique factorization property:

for every morphism λ and every decomposition d(λ) = m + n
with m, n ∈ N2, there exist unique morphisms µ and ν such
that d(µ) = m, d(ν) = n and λ = µν.

For every 2-graph Λ, there is an associated 1-skeleton EΛ, which is
a colored directed graph with E 0 = Λ0 and E 1 = Λ(0,1) ∪ Λ(1,0).
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2-graphs

Given categories C and D, the product category C × D is the
category with

I (C × D)0 = C 0 × D0

I (C × D)∗ = C ∗ × D∗, with composition component-wise from
the contributing categories and identities (1A, 1B) where
A ∈ C 0,B ∈ D0.



Forming a 2-graph from two graphs

Viewing two graphs, E and F , as categories with objects as
vertices and morphisms as paths, we can form their product
category, which we then view as a 2-graph
E×F , with the degree map being ordered pairs of path lengths.

Example:

E : a e // b 1-skeleton for E × E : w e //

g
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Notice that ignoring color, E�E is isomorphic to the
1-skeleton of E × E .
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C*-algebras of 2-graphs

E : a e // b 1-skeleton for E × E : w e //
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There are slightly modified Cuntz-Krieger relations for 2-graphs,
which account for the degrees of the morphisms of the graph.
Using these relations, we still generate a universal graph algebra
unique up to isomorphism. Under these relations
C ∗(E × E ) ∼= M4(C) ∼= C ∗(E )⊗ C ∗(E ).

In general, Alex Kumjian and David Pask have shown that the
C*-algebra of the 2-graph constructed from two graphs, E ,F is
isomorphic to the tensor product of their corresponding
C*-algebras. That is,

C ∗(E × F ) ∼= C ∗(E )⊗ C ∗(F ).



Work in progress

We are in the process of investigating several other products. We
have already investigated

I direct sum of algebras

I crossed product of an algebra with a group

We are still considering:

I tensor product of graphs

I an “overlay” product, that would lead to the strong product

I etc.
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