C*-algebras of graph products

Ann Johnston (Harvey Mudd College) Andrew Reynolds (UCLA)

July 22, 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition of a (directed) Graph

- A graph $E = (E^0, E^1, r, s)$ consists of two countable sets
 - ► E⁰: vertices
 - \blacktriangleright E^1 : edges
 - ▶ and functions $r, s : E^1 \to E^0$ called range and source

Definition of a C*-algebra

Let *F* be a field. A vector space *A* over *F* with a binary operation $A \times A \rightarrow A$ (called multiplication) is an *associative algebra over F* if $\forall x, y \in A$ and $\forall a, b \in F$

$$\blacktriangleright (x+y) \cdot z = x \cdot z + y \cdot z$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(ax) \cdot (by) = (ab)(x \cdot y)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

Definition of a C*-algebra

Let A be an associative algebra over \mathbb{C} . A *norm* on A is a map $\|\cdot\| : A \to \mathbb{R}$ satisfying

• $||v|| \ge 0$ for all $v \in A$ and v = 0 if and only if v = 0 in A

•
$$\|\lambda v\| = |\lambda| \|v\|$$
 for all $v \in A$ and all $\lambda \in \mathbb{C}$

•
$$\|v + w\| \le \|v\| + \|w\|$$
 for all $v, w \in A$.

An *involution* on a complex algebra A is a real-linear map $T \mapsto T^*$ such that for all $S, T \in A$ and $\lambda \in \mathbb{C}$, we have $T^{**} = T$, $(ST)^* = T^*S^*$, $(\lambda T)^* = \overline{\lambda}T^*$.

Definition of a C*-algebra

A *C*-algebra A* is an associative algebra over \mathbb{C} with a norm $a \mapsto ||a||$ and an involution $a \mapsto a^*$, such that *A* is complete with respect to the norm, and such that $||ab|| \le ||a|| ||b||$ and $||a^*a|| = ||a||^2$ for every $a, b \in A$.

Examples of C*-algebras

In general a C*-algebra can be infinite dimensional. It is a theorem (Gelfand-Naimark) that every C*-algebra is isomorphic to a sub C*-algebra of B(H), the algebra of all bounded linear operators on some Hilbert space H.

Our examples will be limited to finite dimensional case, and so our C*-algebras can be thought of as $M_n(\mathbb{C})$, with involution defined as taking the conjugate transpose, and the norm being the operator norm on matrices:

$$||A||_{op} = \sup_{||x|| \le 1} ||Ax|| = \sup_{||x|| = 1} ||Ax||.$$

Forming the C*-algebra of a graph

Let *E* be a row-finite directed graph. A *Cuntz-Krieger E-family* {*S*, *P*} on a hilbert space *H* consists of a set {*P_v* : *v* $\in E^0$ } of mutually orthogonal projections on *H*, and a set {*S_e* : *e* $\in E^1$ } of partial isometries on *H* such that

(日) (同) (三) (三) (三) (○) (○)

►
$$S_e^*S_e = P_{s(e)} \forall e \in E^1$$
; and

•
$$P_v = \sum_{\{e \in E^1: r(e) = v\}} S_e S_e^*$$
 wherever v is not a source.

Forming the C*-algebra of a graph

Let *E* be a row-finite directed graph. A *Cuntz-Krieger E-family* {*S*, *P*} on a hilbert space *H* consists of a set {*P_v* : *v* \in *E*⁰} of mutually orthogonal projections on *H*, and a set {*S_e* : *e* \in *E*¹} of partial isometries on *H* such that

•
$$S_e^*S_e = P_{s(e)} \forall e \in E^1$$
; and

•
$$P_v = \sum_{\{e \in E^1: r(e) = v\}} S_e S_e^*$$
 wherever v is not a source.

It is a theorem that for E there is a C*-algebra, $C^*(E)$ generated by a Cuntz-Krieger E-family which has a universal property. It is unique up to isomorphism and is called the graph algebra of E.

Note: Since we are dealing only with finite-dimensional cases, we will always have $H \cong \mathbb{C}^n$ for some *n*.

Example

$$E: a \xrightarrow{e} b$$

<□ > < @ > < E > < E > E のQ @

► Relations:

Example

$$E: a \xrightarrow{e} b$$

<□ > < @ > < E > < E > E のQ @

► Relations:

► Generators:

$$P_a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad S_e = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

► $C^*(E) = C^*(P_a, P_b, S_e) = M_2(\mathbb{C}).$

Products of graphs

$E_1: u_1 \qquad E_2: u_2 \stackrel{\checkmark}{\longleftarrow} v_2 \stackrel{\checkmark}{\longrightarrow} w_2$

There are many ways of forming larger graphs given two smaller graphs. Examples are:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Products of graphs

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Products of graphs

The box product of E_1 with E_2 is the graph $E_1 \square E_2$ with vertex set $E_1^0 \times E_2^0$, where for all $(u_1, u_2), (v_1, v_2) \in E_1^0 \times E_2^0$ we define $(u_1, u_2) \sim (v_1, v_2)$ if either one of the following holds :

•
$$u_1 = v_1$$
 in G_1 and $u_2 \sim v_2$ in G_2

▶
$$u_2 = v_2$$
 in G_2 and $u_1 \sim v_1$ in G_1 .

$$E: a \xrightarrow{e} b, \qquad E \Box E: \quad (a, a) \longrightarrow (a, b)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(b, a) \longrightarrow (b, b)$$

C*-algebra of the box product

$$E: a \xrightarrow{e} b, \qquad E \Box E: \qquad w \xrightarrow{e} x$$

$$g \downarrow \qquad \downarrow h$$

$$y \xrightarrow{f} z$$

► Relations:

•
$$S_e^*S_e = P_w = S_g^*S_g$$

• $S_h^*S_h = P_x = S_eS_e^*$
• $S_f^*S_f = P_y = S_gS_g^*$
• $P_z = S_fS_f^* + S_hS_h^*$

C*-algebra of the box product

$$E: a \xrightarrow{e} b, \qquad E \Box E: \qquad w \xrightarrow{e} x \\ g \downarrow \qquad \downarrow h \\ y \xrightarrow{f} z$$

Relations:

- ► $S_e^* S_e = P_w = S_g^* S_g$ ► $S_h^* S_h = P_x = S_e S_e^*$ ► $S_f^* S_f = P_y = S_g S_g^*$ ► $P_z = S_f S_e^* + S_h S_h^*$
- We see that this requires a five-dimensional hilbert space, and with calculations we find the graph algebra to be isomorphic to M₅(ℂ).
- ▶ We have seen that $C^*(E) \cong M_2(\mathbb{C})$, and so we see that $C^*(E) \otimes C^*(E) = M_4(\mathbb{C}) \ncong C^*(E \Box E)$.

2-graphs

A category C consists of two classes C^0 of objects, and C^* of morphisms, and two functions $r, s : C^* \to C^0$, domain and codomain, as well as a partially defined product (composition) $(f,g) \mapsto f \circ g$ from $\{(f,g) \in C^* \times C^* : s(f) = r(g)\}$ to C^* , composition, and distinguished elements (identity morphisms) $\{i_v \in C^* : v \in C^0\}$ satisfying

A functor $F : C \to D$ is a pair of maps $F^0 : C^0 \to D^0$ and $F^* : C^* \to D^*$ which respect the domain and codomain maps and composition, and which satisfy $F^*(i_v) = i_{F^0(v)}$.

2-graphs

A rank 2 graph (or 2-graph) (Λ, d) is a countable category Λ , together with a functor $d : \Lambda \to \mathbb{N}^2$, called the degree map, with the following unique factorization property:

for every morphism λ and every decomposition $d(\lambda) = m + n$ with $m, n \in \mathbb{N}^2$, there exist unique morphisms μ and ν such that $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu\nu$.

For every 2-graph Λ , there is an associated 1-skeleton E_{Λ} , which is a colored directed graph with $E^0 = \Lambda^0$ and $E^1 = \Lambda^{(0,1)} \cup \Lambda^{(1,0)}$.

2-graphs

Given categories C and D, the product category $C \times D$ is the category with

$$\blacktriangleright (C \times D)^0 = C^0 \times D^0$$

 (C × D)* = C* × D*, with composition component-wise from the contributing categories and identities (1_A, 1_B) where A ∈ C⁰, B ∈ D⁰.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Forming a 2-graph from two graphs

Viewing two graphs, E and F, as categories with objects as vertices and morphisms as paths, we can form their product category, which we then view as a 2-graph $E \times F$, with the degree map being ordered pairs of path lengths.

Forming a 2-graph from two graphs

Viewing two graphs, E and F, as categories with objects as vertices and morphisms as paths, we can form their product category, which we then view as a 2-graph $E \times F$, with the degree map being ordered pairs of path lengths.

Example:

$$E: a \xrightarrow{e} b$$
 1-skeleton for $E \times E: w \xrightarrow{e} x$
 $g \bigvee_{y \longrightarrow y} \bigvee_{f} z$

Notice that ignoring color, $E \Box E$ is isomorphic to the 1-skeleton of $E \times E$.

C*-algebras of 2-graphs

$$E: a \xrightarrow{e} b \quad 1\text{-skeleton for } E \times E: \qquad w \xrightarrow{e} x$$

$$g \begin{array}{c} & & \\ & &$$

There are slightly modified Cuntz-Krieger relations for 2-graphs, which account for the degrees of the morphisms of the graph. Using these relations, we still generate a universal graph algebra unique up to isomorphism. Under these relations $C^*(E \times E) \cong M_4(\mathbb{C}) \cong C^*(E) \otimes C^*(E)$.

In general, Alex Kumjian and David Pask have shown that the C*-algebra of the 2-graph constructed from two graphs, E, F is isomorphic to the tensor product of their corresponding C*-algebras. That is,

$$C^*(E \times F) \cong C^*(E) \otimes C^*(F).$$

We are in the process of investigating several other products. We have already investigated

- direct sum of algebras
- crossed product of an algebra with a group

We are still considering:

- tensor product of graphs
- ▶ an "overlay" product, that would lead to the strong product

etc.

References

[1] Kenneth R. Davidson, "C*-Algebras by Example". Providence: American Mathematical Society, 1996.

[2] Alex Kumjian and David Pask, "Higher Rank Graph C*-Algebras," "New York Journal of Mathematics" (2000).

[3] Iain Raeburn, "Graph Algebras". Providence: American Mathematical Society, 2005.

[4] M. Rordam, F. Larsen, & N. J. Laustsen, "An Introduction to K-Theory for C*-Algebras". Cambridge: Cambridge University Press, 2000.