C*-algebras of graph products

Ann Johnston (Harvey Mudd College) Andrew Reynolds (UCLA)

July 22, 2009

Definition of a (directed) Graph

A graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of two countable sets

- E^{0} : vertices
- E^{1} : edges
- and functions r,s: $E^{1} \rightarrow E^{0}$ called range and source

Definition of a C*-algebra

Let F be a field. A vector space A over F with a binary operation $A \times A \rightarrow A$ (called multiplication) is an associative algebra over F if $\forall x, y \in A$ and $\forall a, b \in F$

- $(x+y) \cdot z=x \cdot z+y \cdot z$
- $x \cdot(y+z)=x \cdot y+x \cdot z$
- $(a x) \cdot(b y)=(a b)(x \cdot y)$
- $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

Definition of a C*-algebra

Let A be an associative algebra over \mathbb{C}.
A norm on A is a map $\|\cdot\|: A \rightarrow \mathbb{R}$ satisfying

- $\|v\| \geq 0$ for all $v \in A$ and $v=0$ if and only if $v=0$ in A
- $\|\lambda v\|=|\lambda|\|v\|$ for all $v \in A$ and all $\lambda \in \mathbb{C}$
- $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in A$.

An involution on a complex algebra A is a real-linear map $T \mapsto T^{*}$ such that for all $S, T \in A$ and $\lambda \in \mathbb{C}$, we have $T^{* *}=T,(S T)^{*}=T^{*} S^{*},(\lambda T)^{*}=\bar{\lambda} T^{*}$.

Definition of a C*-algebra

A C^{*}-algebra A is an associative algebra over \mathbb{C} with a norm $a \mapsto\|a\|$ and an involution $a \mapsto a^{*}$, such that A is complete with respect to the norm, and such that $\|a b\| \leq\|a\|\|b\|$ and $\left\|a^{*} a\right\|=\|a\|^{2}$ for every $a, b \in A$.

Examples of C*-algebras

In general a C^{*}-algebra can be infinite dimensional. It is a theorem (Gelfand-Naimark) that every C^{*}-algebra is isomorphic to a sub C^{*}-algebra of $B(H)$, the algebra of all bounded linear operators on some Hilbert space H.

Our examples will be limited to finite dimensional case, and so our C*-algebras can be thought of as $M_{n}(\mathbb{C})$, with involution defined as taking the conjugate transpose, and the norm being the operator norm on matrices:

$$
\|A\|_{o p}=\sup _{\|x\| \leq 1}\|A x\|=\sup _{\|x\|=1}\|A x\|
$$

Forming the C^{*}-algebra of a graph

Let E be a row-finite directed graph. A Cuntz-Krieger E-family $\{S, P\}$ on a hilbert space H consists of a set $\left\{P_{v}: v \in E^{0}\right\}$ of mutually orthogonal projections on H, and a set $\left\{S_{e}: e \in E^{1}\right\}$ of partial isometries on H such that

- $S_{e}^{*} S_{e}=P_{s(e)} \forall e \in E^{1}$; and
- $P_{v}=\sum_{\left\{e \in E^{1}: r(e)=v\right\}} S_{e} S_{e}^{*}$ wherever v is not a source.

Forming the C^{*}-algebra of a graph

Let E be a row-finite directed graph. A Cuntz-Krieger E-family $\{S, P\}$ on a hilbert space H consists of a set $\left\{P_{v}: v \in E^{0}\right\}$ of mutually orthogonal projections on H, and a set $\left\{S_{e}: e \in E^{1}\right\}$ of partial isometries on H such that

- $S_{e}^{*} S_{e}=P_{s(e)} \forall e \in E^{1}$; and
- $P_{v}=\sum_{\left\{e \in E^{1}: r(e)=v\right\}} S_{e} S_{e}^{*}$ wherever v is not a source.

It is a theorem that for E there is a C^{*}-algebra, $C^{*}(E)$ generated by a Cuntz-Krieger E-family which has a universal property. It is unique up to isomorphism and is called the graph algebra of E.

Note: Since we are dealing only with finite-dimensional cases, we will always have $H \cong \mathbb{C}^{n}$ for some n.

Example

$$
E: a \xrightarrow{e} b
$$

- Relations:
- $S_{e}^{*} S_{e}=P_{a}$
- $P_{b}=S_{e} S_{e}^{*}$

Example

$$
E: a \xrightarrow{e} b
$$

- Relations:
- $S_{e}^{*} S_{e}=P_{a}$
- $P_{b}=S_{e} S_{e}^{*}$
- Generators:

$$
\begin{aligned}
& P_{a}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{b}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad S_{e}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& C^{*}(E)=C^{*}\left(P_{a}, P_{b}, S_{e}\right)=M_{2}(\mathbb{C}) .
\end{aligned}
$$

Products of graphs

There are many ways of forming larger graphs given two smaller graphs. Examples are:

Products of graphs

- union $\quad E_{1} \cup E_{2}: \quad u_{1} u_{2} \leftrightharpoons v_{2} \longrightarrow w_{2}$
- tensor product

- box (cartesian) product

$$
E_{1} \square E_{2}: \quad\left(u_{1}, u_{2}\right) \longleftrightarrow\left(u_{1}, v_{2}\right) \longrightarrow\left(u_{1}, w_{2}\right)
$$

Products of graphs

The box product of E_{1} with E_{2} is the graph $E_{1} \square E_{2}$ with vertex set $E_{1}^{0} \times E_{2}^{0}$, where for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in E_{1}^{0} \times E_{2}^{0}$ we define $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ if either one of the following holds:

- $u_{1}=v_{1}$ in G_{1} and $u_{2} \sim v_{2}$ in G_{2},
- $u_{2}=v_{2}$ in G_{2} and $u_{1} \sim v_{1}$ in G_{1}.

$$
\begin{aligned}
E: \quad a \xrightarrow{e} b, \quad E \square E: \quad(a, a) & \longrightarrow(a, b) \\
& \\
& \\
& \\
& (b, a) \longrightarrow(b, b)
\end{aligned}
$$

C*-algebra of the box product

$$
E: \quad a \xrightarrow{e} b, \quad E \square E: \quad{ }_{g}^{w} \underset{y}{w} \underset{f}{e} z
$$

- Relations:
- $S_{e}^{*} S_{e}=P_{w}=S_{g}^{*} S_{g}$
- $S_{h}^{*} S_{h}=P_{x}=S_{e}^{G} S_{e}^{*}$
- $S_{f}^{*} S_{f}=P_{y}=S_{g} S_{g}^{*}$
- $P_{z}=S_{f} S_{f}^{*}+S_{h} S_{h}^{*}$

C*-algebra of the box product

- Relations:
- $S_{e}^{*} S_{e}=P_{w}=S_{g}^{*} S_{g}$
- $S_{h}^{*} S_{h}=P_{x}=S_{e} S_{e}^{*}$
- $S_{f}^{*} S_{f}=P_{y}=S_{g} S_{g}^{*}$
- $P_{z}=S_{f} S_{f}^{*}+S_{h} S_{h}^{*}$
- We see that this requires a five-dimensional hilbert space, and with calculations we find the graph algebra to be isomorphic to $M_{5}(\mathbb{C})$.
- We have seen that $C^{*}(E) \cong M_{2}(\mathbb{C})$, and so we see that $C^{*}(E) \otimes C^{*}(E)=M_{4}(\mathbb{C}) \not \equiv C^{*}(E \square E)$.

2-graphs

A category C consists of two classes C^{0} of objects, and C^{*} of morphisms, and two functions $r, s: C^{*} \rightarrow C^{0}$, domain and codomain, as well as a partially defined product (composition) $(f, g) \mapsto f \circ g$ from $\left\{(f, g) \in C^{*} \times C^{*}: s(f)=r(g)\right\}$ to C^{*}, composition, and distinguished elements (identity morphisms) $\left\{i_{v} \in C^{*}: v \in C^{0}\right\}$ satisfying

- $r(f g)=r(f)$ and $s(f g)=s(g)$
- $(f g) h=f(g h)$ when $s(f)=r(g)$ and $s(g)=r(h)$
- $r\left(i_{v}\right)=v=s\left(i_{v}\right)$ and $i_{v} f=f, g i_{v}=g$ when $r(f)=v$ and $s(g)=v$.
A functor $F: C \rightarrow D$ is a pair of maps $F^{0}: C^{0} \rightarrow D^{0}$ and $F^{*}: C^{*} \rightarrow D^{*}$ which respect the domain and codomain maps and composition, and which satisfy $F^{*}\left(i_{v}\right)=i_{F^{0}(v)}$.

2-graphs

A rank 2 graph (or 2-graph) (Λ, d) is a countable category Λ, together with a functor $d: \Lambda \rightarrow \mathbb{N}^{2}$, called the degree map, with the following unique factorization property:
for every morphism λ and every decomposition $d(\lambda)=m+n$ with $m, n \in \mathbb{N}^{2}$, there exist unique morphisms μ and ν such that $d(\mu)=m, d(\nu)=n$ and $\lambda=\mu \nu$.
For every 2 -graph Λ, there is an associated 1 -skeleton E_{Λ}, which is a colored directed graph with $E^{0}=\Lambda^{0}$ and $E^{1}=\Lambda^{(0,1)} \cup \Lambda^{(1,0)}$.

2-graphs

Given categories C and D, the product category $C \times D$ is the category with

- $(C \times D)^{0}=C^{0} \times D^{0}$
- $(C \times D)^{*}=C^{*} \times D^{*}$, with composition component-wise from the contributing categories and identities $\left(1_{A}, 1_{B}\right)$ where $A \in C^{0}, B \in D^{0}$.

Forming a 2-graph from two graphs

Viewing two graphs, E and F, as categories with objects as vertices and morphisms as paths, we can form their product category, which we then view as a 2-graph $E \times F$, with the degree map being ordered pairs of path lengths.

Forming a 2-graph from two graphs

Viewing two graphs, E and F, as categories with objects as vertices and morphisms as paths, we can form their product category, which we then view as a 2-graph
$E \times F$, with the degree map being ordered pairs of path lengths.

Example:

Notice that ignoring color, $E \square E$ is isomorphic to the 1-skeleton of $E \times E$.

C*-algebras of 2-graphs

$E: \quad a \xrightarrow{e} b \quad$ 1-skeleton for $E \times E:$

There are slightly modified Cuntz-Krieger relations for 2-graphs, which account for the degrees of the morphisms of the graph. Using these relations, we still generate a universal graph algebra unique up to isomorphism. Under these relations $C^{*}(E \times E) \cong M_{4}(\mathbb{C}) \cong C^{*}(E) \otimes C^{*}(E)$.

In general, Alex Kumjian and David Pask have shown that the C^{*}-algebra of the 2-graph constructed from two graphs, E, F is isomorphic to the tensor product of their corresponding C*-algebras. That is,

$$
C^{*}(E \times F) \cong C^{*}(E) \otimes C^{*}(F)
$$

Work in progress

We are in the process of investigating several other products. We have already investigated

- direct sum of algebras
- crossed product of an algebra with a group

We are still considering:

- tensor product of graphs
- an "overlay" product, that would lead to the strong product
- etc.

References

[1] Kenneth R. Davidson, "C*-Algebras by Example". Providence: American Mathematical Society, 1996.
[2] Alex Kumjian and David Pask, "Higher Rank Graph C*-Algebras," "New York Journal of Mathematics" (2000).
[3] Iain Raeburn, "Graph Algebras". Providence: American Mathematical Society, 2005.
[4] M. Rordam, F. Larsen, \& N. J. Laustsen, "An Introduction to K-Theory for C*-Algebras". Cambridge: Cambridge University Press, 2000.

