Graph Fortresses and Cheeger Values

Gregory Gauthier¹

¹Vanderbilt University Supported by an REU grant at Canisius College

RIT Conference, July 22, 2009

Outline

Motivation

- Fortresses
- The Cheeger Value
- The Infinite Case

2 My Results

- Preliminary Results
- Results from Cellular Automaton Interpretation
- Graph Families

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Fortresses The Cheeger Value The Infinite Case

What Is a Fortress?

- A fortress is a set of vertices on a finite graph so that at least half of each fortress vertex's neighbors are in the fortress.
- Double fortress: both a set and its complement are fortresses.

Fortresses The Cheeger Value The Infinite Case

What Is a Fortress?

- A fortress is a set of vertices on a finite graph so that at least half of each fortress vertex's neighbors are in the fortress.
- Double fortress: both a set and its complement are fortresses.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

The Fortress as the Basis of a Cellular Automaton

• Cellular automaton on graphs:

- Each vertex is + or -.
- Each tick, vertex changes sign to majority of neighbors.
- ID A_0 as all + verts. at t = 0, then succ. states of + verts. are A_1, A_2, A_3, \ldots
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

The Fortress as the Basis of a Cellular Automaton

Cellular automaton on graphs:

- Each vertex is + or -.
- Each tick, vertex changes sign to majority of neighbors.
- ID A₀ as all + verts. at t = 0, then succ. states of + verts. are A₁, A₂, A₃,....
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

The Fortress as the Basis of a Cellular Automaton

- Cellular automaton on graphs:
 - Each vertex is + or -.
 - Each tick, vertex changes sign to majority of neighbors.
 - ID A_0 as all + verts. at t = 0, then succ. states of + verts. are A_1, A_2, A_3, \ldots
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

The Fortress as the Basis of a Cellular Automaton

- Cellular automaton on graphs:
 - Each vertex is + or -.
 - Each tick, vertex changes sign to majority of neighbors.
 - ID A_0 as all + verts. at t = 0, then succ. states of + verts. are A_1, A_2, A_3, \ldots .
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

The Fortress as the Basis of a Cellular Automaton

- Cellular automaton on graphs:
 - Each vertex is + or -.
 - Each tick, vertex changes sign to majority of neighbors.
 - ID A_0 as all + verts. at t = 0, then succ. states of + verts. are A_1, A_2, A_3, \ldots .
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

The Fortress as the Basis of a Cellular Automaton

- Cellular automaton on graphs:
 - Each vertex is + or -.
 - Each tick, vertex changes sign to majority of neighbors.
 - ID A_0 as all + verts. at t = 0, then succ. states of + verts. are A_1, A_2, A_3, \ldots .
- Double fortresses = steady states
- Also interested in other endings as $t \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Fortresses The Cheeger Value The Infinite Case

Cheeger Value and Constant

• For $\emptyset \subsetneq A \subsetneq V(G)$, define *Cheeger value* $h_G(A) = \frac{\partial(A, V(G) \setminus A)}{\min\{|A|, |V(G) \setminus A|\}}.$

- Answers "how connected or robust is G?"
- Contrast Chung's def'n.
- Cheeger constant is minimum Cheeger value.
- *A* is *minimal Cheeger set* if any nonempty proper subset of *A* has greater Cheeger value.

Fortresses The Cheeger Value The Infinite Case

Cheeger Value and Constant

- For $\emptyset \subsetneq A \subsetneq V(G)$, define *Cheeger value* $h_G(A) = \frac{\partial(A, V(G) \setminus A)}{\min\{|A|, |V(G) \setminus A|\}}.$
 - Answers "how connected or robust is G?"
 - Contrast Chung's def'n.
- Cheeger constant is minimum Cheeger value.
- *A* is *minimal Cheeger set* if any nonempty proper subset of *A* has greater Cheeger value.

Fortresses The Cheeger Value The Infinite Case

Cheeger Value and Constant

- For $\emptyset \subsetneq A \subsetneq V(G)$, define *Cheeger value* $h_G(A) = \frac{\partial(A, V(G) \setminus A)}{\min\{|A|, |V(G) \setminus A|\}}.$
 - Answers "how connected or robust is G?"
 - Contrast Chung's def'n.
- Cheeger constant is minimum Cheeger value.
- *A* is *minimal Cheeger set* if any nonempty proper subset of *A* has greater Cheeger value.

Fortresses The Cheeger Value The Infinite Case

Cheeger Value and Constant

- For $\emptyset \subsetneq A \subsetneq V(G)$, define *Cheeger value* $h_G(A) = \frac{\partial(A, V(G) \setminus A)}{\min\{|A|, |V(G) \setminus A|\}}.$
 - Answers "how connected or robust is G?"
 - Contrast Chung's def'n.
- Cheeger constant is minimum Cheeger value.
- *A* is *minimal Cheeger set* if any nonempty proper subset of *A* has greater Cheeger value.

Cheeger Value and Constant

- For $\emptyset \subsetneq A \subsetneq V(G)$, define Cheeger value $h_G(A) = \frac{\partial(A, V(G) \setminus A)}{\min\{|A|, |V(G) \setminus A|\}}$.
 - Answers "how connected or robust is G?"
 - Contrast Chung's def'n.
- Cheeger constant is minimum Cheeger value.
- A is *minimal Cheeger set* if any nonempty proper subset of A has greater Cheeger value.

・ロト (周) (E) (E) (E) (E)

Fortresses The Cheeger Value The Infinite Case

Extending to the Infinite

Only deal in finite graphs

- Possible to extend to infinite with graph families
- Nested subgraphs G_1, G_2, G_3, \ldots
- Applications: Expander & Cayley graphs of infinite groups

Fortresses The Cheeger Value The Infinite Case

Extending to the Infinite

- Only deal in finite graphs
- Possible to extend to infinite with graph families
- Nested subgraphs G_1, G_2, G_3, \ldots
- Applications: Expander & Cayley graphs of infinite groups

Fortresses The Cheeger Value The Infinite Case

Extending to the Infinite

- Only deal in finite graphs
- Possible to extend to infinite with graph families
- Nested subgraphs G_1, G_2, G_3, \ldots
- Applications: Expander & Cayley graphs of infinite groups

Fortresses The Cheeger Value The Infinite Case

Extending to the Infinite

- Only deal in finite graphs
- Possible to extend to infinite with graph families
- Nested subgraphs G_1, G_2, G_3, \ldots
- Applications: Expander & Cayley graphs of infinite groups

Motivation Prelimit My Results Results Summary Graph I

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Minimal Cheeger Sets as Fortresses

Theorem

If A is a minimal Cheeger set on finite G with $h_G(A) < 1$, then A is a fortress. Further, if $h_G(A) = 1$, then A is a fortress if each vertex in G has degree at least 2.

Proof uses both minimality and that the Cheeger value is no more than 1.

Motivation Preliminary Results My Results Results from Cellula Summary Graph Families

Minimal Cheeger Sets as Fortresses

Theorem

If A is a minimal Cheeger set on finite G with $h_G(A) < 1$, then A is a fortress. Further, if $h_G(A) = 1$, then A is a fortress if each vertex in G has degree at least 2.

Proof uses both minimality and that the Cheeger value is no more than 1.

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Extending Fortresses

Theorem

If A and B are fortresses on G, then so is $A \cup B$.

Theorem

If A is a fortress and at least half of v's neighbors are in A, then $A \cup \{v\}$ is a fortress.

Gregory Gauthier Graph Fortresses and Cheeger Values

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Extending Fortresses

Theorem

If A and B are fortresses on G, then so is $A \cup B$.

Theorem

If A is a fortress and at least half of v's neighbors are in A, then $A \cup \{v\}$ is a fortress.

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Nontrivial Double Fortress Guarantee

Theorem

If G is a finite graph with $h_G < 1$, or with $h_G = 1$ and every vertex having degree 2 or more, then G has a nontrivial double fortress.

Much stronger version possible using our CA All conditions needed; converse not true

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Nontrivial Double Fortress Guarantee

Theorem

If G is a finite graph with $h_G < 1$, or with $h_G = 1$ and every vertex having degree 2 or more, then G has a nontrivial double fortress.

Much stronger version possible using our CA All conditions needed; converse not true

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Nontrivial Double Fortress Guarantee

Theorem

If G is a finite graph with $h_G < 1$, or with $h_G = 1$ and every vertex having degree 2 or more, then G has a nontrivial double fortress.

Much stronger version possible using our CA All conditions needed; converse not true

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Some Basic CA Properties

Theorem

 $(A^c)_n = (A_n)^c$. (The CA acts equally on A and its complement.)

Theorem

If $B_0 \subset A_0$, then for all positive integers i, $B_i \subset A_i$.

Gregory Gauthier Graph Fortresses and Cheeger Values

Preliminary Results Results from Cellular Automaton Interpretation Graph Families

Some Basic CA Properties

Theorem

 $(A^c)_n = (A_n)^c$. (The CA acts equally on A and its complement.)

Theorem

If $B_0 \subset A_0$, then for all positive integers *i*, $B_i \subset A_i$.

Gregory Gauthier Graph Fortresses and Cheeger Values

Fortress Results from CA Interpretation

Theorem

 A_0 is a fortress iff $A_0 \subset A_1 \subset A_2 \subset \cdots$. Moreover, if either condition holds, each A_i is also a fortress.

Corollary

 A_0 is a double fortress iff $A_0 = A_1 = A_2 = \cdots$.

Fortress Results from CA Interpretation

Theorem

 A_0 is a fortress iff $A_0 \subset A_1 \subset A_2 \subset \cdots$. Moreover, if either condition holds, each A_i is also a fortress.

Corollary

 A_0 is a double fortress iff $A_0 = A_1 = A_2 = \cdots$.

Creating a Double Fortress from Disjoint Fortresses

Theorem

Suppose A and B are disjoint nontrivial fortresses on G. Then G has a nontrivial double fortress.

- Create double fortress by iterating *A* until it reaches steady state.
- If h_G < 1 or h_G = 1 and each vertex has degree 2 or more, then G has a double fortress.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Creating a Double Fortress from Disjoint Fortresses

Theorem

Suppose A and B are disjoint nontrivial fortresses on G. Then G has a nontrivial double fortress.

- Create double fortress by iterating *A* until it reaches steady state.
- If h_G < 1 or h_G = 1 and each vertex has degree 2 or more, then G has a double fortress.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Creating a Double Fortress from Disjoint Fortresses

Theorem

Suppose A and B are disjoint nontrivial fortresses on G. Then G has a nontrivial double fortress.

- Create double fortress by iterating *A* until it reaches steady state.
- If h_G < 1 or h_G = 1 and each vertex has degree 2 or more, then G has a double fortress.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Brief Word on Graph Families

- Recall a graph family is a sequence of nested subgraphs G_1, G_2, G_3, \ldots
- A vertex *v* in a graph family member *G_n* is *finalized* if the neighborhood of *v* does not change in any later graph.
- A fortress F on G_n is *stable* if it is also a fortress on any later graph.
- Any fortress consisting of only finalized vertices is stable.

Brief Word on Graph Families

- Recall a graph family is a sequence of nested subgraphs G_1, G_2, G_3, \ldots
- A vertex *v* in a graph family member *G_n* is *finalized* if the neighborhood of *v* does not change in any later graph.
- A fortress F on G_n is *stable* if it is also a fortress on any later graph.
- Any fortress consisting of only finalized vertices is stable.

Brief Word on Graph Families

- Recall a graph family is a sequence of nested subgraphs G_1, G_2, G_3, \ldots
- A vertex *v* in a graph family member *G_n* is *finalized* if the neighborhood of *v* does not change in any later graph.
- A fortress F on G_n is *stable* if it is also a fortress on any later graph.
- Any fortress consisting of only finalized vertices is stable.

Brief Word on Graph Families

- Recall a graph family is a sequence of nested subgraphs G_1, G_2, G_3, \ldots
- A vertex *v* in a graph family member *G_n* is *finalized* if the neighborhood of *v* does not change in any later graph.
- A fortress F on G_n is *stable* if it is also a fortress on any later graph.
- Any fortress consisting of only finalized vertices is stable.

Collapsed Graph Families

- A graph family is collapsed if every vertex in G_n is finalized in G_{n+1}
- Any fortress in G_n consisting only of vertices in G_{n-1} is stable.

Collapsed Graph Families

- A graph family is collapsed if every vertex in *G_n* is finalized in *G_{n+1}*
- Any fortress in *G_n* consisting only of vertices in *G_{n-1}* is stable.

• Fortresses are strongly related to Cheeger constants.

• Stable fortresses in graph families are important in analyzing Cayley graphs.

Outlook

- How do fortresses depend on or affect a graph's spectrum?
- Is there a criterion for showing a graph (family) lacks a (stable) fortress?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Fortresses are strongly related to Cheeger constants.
- Stable fortresses in graph families are important in analyzing Cayley graphs.
- Outlook
 - How do fortresses depend on or affect a graph's spectrum?
 - Is there a criterion for showing a graph (family) lacks a (stable) fortress?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Fortresses are strongly related to Cheeger constants.
- Stable fortresses in graph families are important in analyzing Cayley graphs.

Outlook

- How do fortresses depend on or affect a graph's spectrum?
- Is there a criterion for showing a graph (family) lacks a (stable) fortress?

・ロト < 同ト < 目ト < 目ト < 目と のQQ

- Fortresses are strongly related to Cheeger constants.
- Stable fortresses in graph families are important in analyzing Cayley graphs.
- Outlook
 - How do fortresses depend on or affect a graph's spectrum?
 - Is there a criterion for showing a graph (family) lacks a (stable) fortress?

- Fortresses are strongly related to Cheeger constants.
- Stable fortresses in graph families are important in analyzing Cayley graphs.
- Outlook
 - How do fortresses depend on or affect a graph's spectrum?
 - Is there a criterion for showing a graph (family) lacks a (stable) fortress?

・ロト < 同ト < 目ト < 目ト < 目と のQQ

For Further Reading I

Spectral Graph Theory.

American Mathematical Society, 1997.

Gregory Gauthier Graph Fortresses and Cheeger Values

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □