Embeddings in Symbolic Dynamical Systems

Jonathan Jaquette

Swarthmore College

July 22, 2009

・ロト ・四ト ・ヨト ・ヨト

Symbolic Dynamical Systems Symbolic Embedding Examples Results

General Dynamical Systems Topological Dynamical Systems Topological Entropy

A Dynamical System

(X, f)

Phase Space

Function

$$X \xrightarrow{f} X$$

・ロト ・四ト ・ヨト ・ヨト

Э

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

Example Dynamical System

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

Category of Dynamical Systems

Objects Dynamical systems Maps Commuting Maps

・ロト ・四ト ・ヨト ・ヨト

æ

Symbolic Dynamical Systems Symbolic Embedding Examples Results

Subsystem

General Dynamical Systems Topological Dynamical Systems Topological Entropy

Let (X, d, f) be a dynamical system. If $\Lambda \subseteq X$ is an invariant subset of f, i.e., $f(\Lambda) \subseteq \Lambda$, then the restriction of f on Λ , $f|_{\Lambda} : \Lambda \to \Lambda$, determines a dynamical system $(\Lambda, f|_{\Lambda})$, which is called a subsystem of (X, f).

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

A Topological Dynamical System

(X, f)

- Topological Phase Space
- Continuous Function

 $X \xrightarrow{f} X$

・ロト ・四ト ・ヨト ・ヨト

æ

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

Example Topological Dynamical System

イロト イヨト イヨト イヨト

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

Category of Topological Dynamical Systems

- Objects Topological Dynamical systems Maps Continuous Commuting
 - Maps Continuous Commuting Maps
 - Conjugacy
 - Semi-Conjugacy
 - Embedding
 - Weak Embedding

イロト イヨト イヨト イヨト

æ

Symbolic Dynamical Systems Symbolic Embedding Examples Results General Dynamical Systems Topological Dynamical Systems Topological Entropy

Measurements of Chaos: Topological Entropy

- Topological entropy quantitatively describes complexity of a topological dynamical system.
- In a metric space, it describes the average exponential growth of the number of distinguishable orbit segments. [5]

イロト イポト イヨト イヨト

Ordinary Symbolic Dynamical System Product Symbolic Dynamical System

Ordinary Symbolic Dynamical System

Let *m* be a positive integer and \mathcal{M} the finite set consisting of positive integers which are less than m + 1. Let $\mathcal{M}^{\mathbb{N}}$ be the set of all unilateral infinite sequences consisting of all elements of \mathcal{M} . Let *n* be a non-negative integer, *r* an element of $\mathcal{M}^{\mathbb{N}}$ and $(r)_n$ the n^{th} component of *r*. We define the following metric on $\mathcal{M}^{\mathbb{N}}$:

$$D(r,s) = \sum_{k=0}^{\infty} \frac{1 - \delta((r)_k, (s)_k)}{m^k}, \quad r, s \in \mathcal{M}^{\mathbb{N}},$$
(1)

where δ means Kronecker's delta. The mapping $\sigma : \mathcal{M}^{\mathbb{N}} \to \mathcal{M}^{\mathbb{N}}$ is called the shift transformation if $(\sigma r)_n = (r)_{n+1}$ holds for all $n \in \mathbb{N}$ and for all $r \in \mathcal{M}^{\mathbb{N}}$.

Product Symbolic Dynamical System

For any positive integer *n*, let $(\mathcal{M}_n^{\mathbb{N}}, D_n, S_n)$ be a symbolic dynamical system. Then, the product topological space constructed from $\{(\mathcal{M}_n^{\mathbb{N}}, D_n)\}_{n=1}^{\infty}$ which is denoted by $\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}$, is also a compact and totally disconnected topological space. $\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}$ can be metrized by the metric *D* which is defined as

$$D(\{r_n\}_{n=1}^{\infty},\{s_n\}_{n=1}^{\infty})=\sum_{n=1}^{\infty}\frac{D_n(r_n,s_n)}{2^n}, \ \{r_n\}_{n=1}^{\infty},\{s_n\}_{n=1}^{\infty}\in\prod_{n=1}^{\infty}\mathcal{M}_n^{\mathbb{N}}.$$

Let $\prod_{n=1}^{\infty} S_n$ be the mapping on $\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}$ with values in $\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}$ defined as

$$\left(\prod_{n=1}^{\infty}S_n\right)\left(\{r_n\}_{n=1}^{\infty}\right)=\{S_nr_n\}_{n=1}^{\infty}.$$

5 × < 5 ×

Symbolic Embeddings

Let (X, d) be a compact and totally disconnected metric space, and T a continuous endomorphism.

- The dynamical system (X, d, T) can be embedded into a product symbolic dynamical system. [2]
- ► If T is expansive, then (X, d, T) may be embedded into an ordinary symbolic dynamical system. [1]
- ► If T is expansive, then (X, d, T) can be weakly embedded in an ordinary symbolic dynamical system, even if X is not compact. [4]
- Nothing is known about weak embeddings in product symbolic dynamical systems.

Disconnecting the System

For a given dynamical system, we want an invariant subsystem with a totally disconnected phase space.

- Removing open sets
- Removing single points

Tent Map Wobble Function

Tent Map

Tent Map Wobble Function

Tent Map

Figure: Four iterations of h(x)

イロト イヨト イヨト イヨト

Tent Map Wobble Function

Tent Map

Figure: Restriction to the unit interval

イロト イヨト イヨト イヨト

Tent Map Wobble Function

Tent Map

Figure: Four Iterations

・ロト ・四ト ・ヨト ・ヨト

æ,

Tent Map Wobble Function

Symbolically Embedding the System

For a given point $x \in \Gamma$, has the ternary expansion $x_0x_1x_2x_3...$ where $x_i \in \{0, 1, 2\}$ for all $i \in \mathbb{Z}_+$. Define a map $\pi(x)$ for a given point $x \in \Gamma$ mapping to a point $y = y_0y_1y_2y_3... \in \{0, 1\}^{\mathbb{N}}$, recursively, with respect to the ternary expansion of x, by

$$y_0 = egin{cases} 0 ext{ if } x < 1/2 \ 1 ext{ otherwise} \end{cases}$$

$$y_{i+1} = \begin{cases} 0 \text{ if } x_i = 0, \ x_{i+1} = 0\\ 0 \text{ if } x_i = 2, \ x_{i+1} = 2\\ 1 \text{ if } x_i = 2, \ x_{i+1} = 0\\ 1 \text{ if } x_i = 0, \ x_{i+1} = 2 \end{cases}$$

ヘロト ヘポト ヘヨト ヘヨト

Tent Map Wobble Function

Point Path

Figure: Iteration Path of the point $\frac{56}{81} = .2002000...$

イロト イヨト イヨト イヨト

Tent Map Wobble Function

Wobble Function

Jonathan Jaquette Embeddings in Symbolic Dynamical Systems

Results

Prop 1 Let (X, d) be a metric space and $T : X \to X$ a continuous mapping. If there exists an at most countable partition $X = \bigcup_{i \in \mathbb{N}} P_i$ such that each restriction of the map $T|_{P_i} : P_i \to X$ is injective, then there exists a countable set $Y \subset X$ such that $X \setminus Y$ is dense in X and $(X \setminus Y, T|_{X \setminus Y})$ is a totally disconnected subsystem of (X, T). Prop 2 Let (X, d) be a metric space, $T : X \to X$ a continuous

mapping and h(X, T) denote the topological entropy of the dynamical system (X, T). If there exists a set $Y \subset X$ such that $X \setminus Y$ is dense in X and $(X \setminus Y, T|_{X \setminus Y})$ is a subsystem of (X, T), then

$$h(X, T) = h(X \setminus Y, T|_{X \setminus Y})$$

Results

- Conj 1 Let (X, T) be a dynamical system whose phase space is a totally disconnected metric space. Then (X, T) is weakly embeddable into a product symbolic dynamical system.
- Conj 2 Let (X,d,T) be a dynamical system with a totally disconnected domain and $(\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}, D, \prod_{n=1}^{\infty} S_n)$ is a product symbolic dynamical system into which (X, d, T) can be weakly embedded. Then, the following equality holds:

$$h(X, d, T) = h\left(\prod_{n=1}^{\infty} \mathcal{M}_n^{\mathbb{N}}, D, \prod_{n=1}^{\infty} S_n\right)$$

・ロト ・四ト ・ヨト ・ヨト

Bibliography I

Embedding of expansive dynamical systems into symbolic dynamical systems.

Reports on Mathematical Physics, 46(1/2):11–14, 2000.

S. Akashi.

Embedding of nonlinear dynamical systems with compact and totally disconnected domains into the product symbolic dynamical systems.

Nonlinear Analysis, 63:1817–1821, 2005.

D. Cheng, Y. Wang, and G. Wei. The product symbolic dynamical systems. Nonlinear Analysis, 2009.

イロト イポト イヨト イヨト

A. Fedeli.

Embeddings into symbolic dynamical systems. *Reports on Mathematical Physics*, 58(3):351–355, 2006.

C. Robinson.

Dynamical Systems : Stability, Symbolic Dynamics, and Chaos.

CRC Press, Boca Raton, Florida, 1998.

イロト イポト イヨト イヨト