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A Dynamical System

(X , f )

I Phase Space

I Function

X
f→ X
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Example Dynamical System

[0, 1]
f→ [0, 1]
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Figure: f (x) = 2x (mod 1)
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Category of Dynamical Systems

Objects Dynamical systems

Maps Commuting Maps

X
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Subsystem

Let (X , d , f ) be a dynamical system. If Λ ⊆ X is an invariant
subset of f , i.e., f (Λ) ⊆ Λ, then the restriction of f on Λ,
f |Λ : Λ→ Λ, determines a dynamical system (Λ, f |Λ), which is
called a subsystem of (X , f ).
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A Topological Dynamical System

(X , f )

I Topological Phase Space

I Continuous Function

X
f→ X
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Example Topological Dynamical System

[−1, 1]
g→ [−1, 1]
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Figure: g(x) = −x
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Category of Topological Dynamical Systems

Objects Topological Dynamical
systems

Maps Continuous Commuting
Maps

I Conjugacy
I Semi-Conjugacy
I Embedding
I Weak Embedding
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Measurements of Chaos: Topological Entropy

I Topological entropy quantitatively describes complexity of a
topological dynamical system.

I In a metric space, it describes the average exponential growth
of the number of distinguishable orbit segments. [5]
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Ordinary Symbolic Dynamical System

Let m be a positive integer and M the finite set consisting of
positive integers which are less than m + 1. Let MN be the set of
all unilateral infinite sequences consisting of all elements of M .
Let n be a non-negative integer, r an element of MN and (r)n the
nth component of r . We define the following metric on MN:

D(r , s) =
∞∑

k=0

1− δ((r)k , (s)k)

mk
, r , s ∈MN, (1)

where δ means Kronecker’s delta. The mapping σ :MN →MN is
called the shift transformation if (σr)n = (r)n+1 holds for all n ∈ N
and for all r ∈MN.
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Product Symbolic Dynamical System

For any positive integer n, let (MN
n ,Dn, Sn) be a symbolic

dynamical system. Then, the product topological space
constructed from {(MN

n ,Dn)}∞n=1 which is denoted by Π∞
n=1MN

n , is
also a compact and totally disconnected topological space.
Π∞

n=1MN
n can be metrized by the metric D which is defined as

D({rn}∞n=1, {sn}∞n=1) =
∞∑

n=1

Dn(rn, sn)

2n
, {rn}∞n=1, {sn}∞n=1 ∈

∞∏
n=1

MN
n .

Let Π∞
n=1Sn be the mapping on Π∞

n=1MN
n with values in Π∞

n=1MN
n

defined as ( ∞∏
n=1

Sn

)
({rn}∞n=1) = {Snrn}∞n=1.
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Symbolic Embeddings

Let (X , d) be a compact and totally disconnected metric space,
and T a continuous endomorphism.

I The dynamical system (X , d ,T ) can be embedded into a
product symbolic dynamical system. [2]

I If T is expansive, then (X , d ,T ) may be embedded into an
ordinary symbolic dynamical system. [1]

I If T is expansive, then (X , d ,T ) can be weakly embedded in
an ordinary symbolic dynamical system, even if X is not
compact. [4]

I Nothing is known about weak embeddings in product
symbolic dynamical systems.
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Disconnecting the System

For a given dynamical system, we want an invariant subsystem
with a totally disconnected phase space.

I Removing open sets

I Removing single points
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Tent Map

R h→ R
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Figure: h(x) =

{
3x if x < 1/2

−3(x − 1) if x ≥ 1/2
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Figure: Four iterations of h(x)
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Tent Map

[0, 1]
h→ [0, 1]
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Figure: Restriction to the unit interval
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Figure: Four Iterations
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Symbolically Embedding the System

For a given point x ∈ Γ, has the ternary expansion x0x1x2x3 . . .
where xi ∈ {0, 1, 2} for all i ∈ Z+. Define a map π(x) for a given
point x ∈ Γ mapping to a point y = y0y1y2y3 . . . ∈ {0, 1}N,
recursively, with respect to the ternary expansion of x , by

y0 =

{
0 if x < 1/2

1 otherwise

yi+1 =


0 if xi = 0, xi+1 = 0

0 if xi = 2, xi+1 = 2

1 if xi = 2, xi+1 = 0

1 if xi = 0, xi+1 = 2
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Figure: Iteration Path of the point 56
81 = .2002000 . . .
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Wobble Function
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Figure: w(x) = −x(1− sin
(

π
2x

)
)
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Results

Prop 1 Let (X , d) be a metric space and T : X → X a continuous
mapping. If there exists an at most countable partition
X =

⋃
i∈N Pi such that each restriction of the map

T |Pi
: Pi → X is injective, then there exists a countable set

Y ⊂ X such that X\Y is dense in X and (X\Y ,T |X\Y ) is a
totally disconnected subsystem of (X ,T ).

Prop 2 Let (X , d) be a metric space, T : X → X a continuous
mapping and h(X ,T ) denote the topological entropy of the
dynamical system (X ,T ). If there exists a set Y ⊂ X such
that X\Y is dense in X and (X\Y ,T |X\Y ) is a subsystem of
(X ,T ), then

h(X ,T ) = h(X\Y ,T |X\Y )
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Conj 1 Let (X ,T ) be a dynamical system whose phase space is a
totally disconnected metric space. Then (X ,T ) is weakly
embeddable into a product symbolic dynamical system.

Conj 2 Let (X,d,T) be a dynamical system with a totally
disconnected domain and (Π∞

n=1MN
n ,D,Π

∞
n=1Sn) is a product

symbolic dynamical system into which (X , d ,T ) can be
weakly embedded. Then, the following equality holds:

h(X , d ,T ) = h

( ∞∏
n=1

MN
n ,D,

∞∏
n=1

Sn

)
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