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Positive Recurrent Infinite Graphs



Recurrence vs. Transience

Recurrent: The probability of returning to the starting vertex goes
to one as time goes to infinity.

Transient: There is a non-zero probability of never returning to
the starting vertex.

In a strongly connected graph, independent of starting vertex.



Expected First Return Time

First Return Time (T+
u ): Given starting vertex u, the time a

given random walk takes to return to u.

Expected First Return Time (Eu(T+
u )): Over a large number of

random walks starting at u, the average first return time.



Positive Recurrence vs. Null Recurrence

For any vertex u in a transient graph, Eu(T+
u ) =∞.

In a recurrent graph, Eu(T+
u ) can be finite or infinite.

Positive Recurrent: Eu(T+
u ) <∞.

Null Recurrent: Eu(T+
u ) =∞.

Independent of starting vertex.



Stationary Measures and Positive Recurrence

Measure (π): A non-negative, real-valued function on the vertices
of a graph.

Transition operator (P): The generalization of the transition
matrix to the infinite case.

P acts on measures in the following way:

Pπ(u) =
∑

v→u

π(v)

outdeg(v)



If a graph is recurrent, then there exists a measure π such that
Pπ = π, unique up to scalar multiples.

The graph is positive recurrent if:

∑

u∈G

π(u) <∞

The graph is null recurrent if:

∑

u∈G

π(u) =∞



Graphs with indeg = outdeg

Theorem
Let G be a strongly connected, infinite graph with
indeg(u) = outdeg(u) for all u ∈ G.

G is not positive recurrent.

π(u) = outdeg(u) is a stationary measure and is not summable.

No infinite undirected or Cayley graphs are positive recurrent.



Stationary Distributions and Expected Return Times

Distribution: A measure π such that:
∑

u∈G

π(u) = 1

A graph is positive recurrent if and only there exists a distribution
π such that Pπ = π. In that case, Eu(T+

u ) = 1
π(u) .



Some Examples of Positive Recurrent Graphs



A locally finite, positive recurrent graph:



A bounded degree, single-edged, positive recurrent graph:
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