Extensions of the Heisenberg Group

Laura Janssen
University of Nebraska-Lincoln

July 22, 2009

The Heisenberg Group

Definition

The Heisenberg Group, often denoted by H_{1}, is the group of 3×3 matrices consisting of elements of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

in \mathbb{R}^{3} which we will denote (x, y, z). Thus, the identity element e is $(0,0,0)$.

Then we can define

$$
\begin{gathered}
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)= \\
\left(\begin{array}{ccc}
1 & x+x^{\prime} & z+z^{\prime}+x y^{\prime} \\
0 & 1 & y+y^{\prime} \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

which is written $\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right)$.

The Heisenberg Group can also be thought of in higher dimensions. The Heisenberg group of $2 n+1$ dimensions in $\mathbb{R}^{2 n+1}$ is usually denoted H_{n} and is the group of matrices under matrix multiplication consisting of elements of the form

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & I_{n} & y \\
0 & 0 & 1
\end{array}\right)
$$

with x a row vector of length n, y a column vector of length n, and I_{n} the identity matrix of n dimensions.

Example

Let $n, m, x, y, z \in \mathbb{R} . H_{2}$, the 5 -dimensional Heisenberg group is the group of matrices with elements of the form

$$
\left(\begin{array}{cccc}
1 & x_{1} & x_{2} & z \\
0 & 1 & 0 & y_{1} \\
0 & 0 & 1 & y_{2} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we will denote this element $\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$. Then the identity element of H_{2} is $(0,0,0,0,0)$ and $\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)^{-1}=\left(-x_{1},-x_{2},-y_{1},-y_{2}, x_{1} y_{1}+x_{2} y_{2}-z\right)$.

Example

As for group multiplication we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, z^{\prime}\right) \\
& =\left(\begin{array}{cccc}
1 & x_{1} & x_{2} & z \\
0 & 1 & 0 & y_{1} \\
0 & 0 & 1 & y_{2} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & x_{1}^{\prime} & x_{2}^{\prime} & z^{\prime} \\
0 & 1 & 0 & y_{1}^{\prime} \\
0 & 0 & 1 & y_{2}^{\prime} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & x_{1}+x_{1}^{\prime} & x_{2}+x_{2}^{\prime} & z+z^{\prime}+x_{1} x_{2}+y_{1} y_{2} \\
0 & 1 & 0 & y_{1}+y_{1}^{\prime} \\
0 & 0 & 1 & y_{2}+y_{2}^{\prime} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, y_{1}+y_{1}^{\prime}, y_{2}+y_{2}^{\prime}, z+z^{\prime}+x_{1} y_{1}^{\prime}+x_{2} y_{2}^{\prime}\right) .
\end{aligned}
$$

Group Extensions

Definition

An extension of a group H by a group N is a group G with a normal subgroup M such that $M \cong N$ and $G / M \cong H$. This information can be encoded into a short exact sequence of groups

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

where $\alpha: N \rightarrow G$ is injective and $\beta: G \rightarrow H$ is surjective. Also, the image of α is the kernel of β.

Definition

An extension of a group H by a group N is a group G with a normal subgroup M such that $M \cong N$ and $G / M \cong H$. This information can be encoded into a short exact sequence of groups

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

where $\alpha: N \rightarrow G$ is injective and $\beta: G \rightarrow H$ is surjective. Also, the image of α is the kernel of β.

In other words, if G is an extension of H by N then N is a normal subgroup of G and the quotient group G / N is isomorphic to group H.

Definition

An extension is called a central extension if the normal subgroup N of G lies in the center of G.

Definition

An extension is called a central extension if the normal subgroup N of G lies in the center of G.

Example

Consider a group N consisting of elements of the form

$$
\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) .
$$

Example

Then N is a subgroup of the Heisenberg group H_{1} since

$$
\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & -z \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right)
$$

which is clearly in N and

$$
\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & z+z^{\prime} \\
0 & 1 & y+y^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

which is also in N.

Example

Furthermore, N is a normal subgroup of H_{1} because

$$
\begin{aligned}
& =\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & -a & a b-c \\
0 & 1 & -b \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & z-a y \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \in N .
\end{aligned}
$$

Example

Furthermore, N is a normal subgroup of H_{1} because

$$
\begin{aligned}
& =\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & -a & a b-c \\
0 & 1 & -b \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & z-a y \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \in N .
\end{aligned}
$$

Since $H_{1} / N \cong\left\{(x, 0,0) \in H_{1}\right\}$, we can construct an exact sequence of groups.

$$
e \rightarrow N \rightarrow H_{1} \rightarrow\{(x, 0,0)\} \rightarrow e
$$

Example

Now consider a group A in \mathbb{R}^{4} with elements of the form (x, y, z, d). The group multiplication is defined by
$(x, y, z, d) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, d^{\prime}\right)=\left(e^{d^{\prime}} x+x^{\prime}, e^{-d^{\prime}} y+y^{\prime}, z+z^{\prime}+e^{d^{\prime}}\left(x \cdot y^{\prime}\right), d+d^{\prime}\right)$.
Let $(x, y, z, 0) \in H_{1}$. Then H_{1} is a subgroup of A because $(x, y, z, 0)^{-1}=(-x,-y, x y-z, 0) \in A$ and

$$
(x, y, z, 0) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, 0\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}, 0\right) \in A
$$

Example

Now consider a group A in \mathbb{R}^{4} with elements of the form (x, y, z, d). The group multiplication is defined by $(x, y, z, d) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, d^{\prime}\right)=\left(e^{d^{\prime}} x+x^{\prime}, e^{-d^{\prime}} y+y^{\prime}, z+z^{\prime}+e^{d^{\prime}}\left(x \cdot y^{\prime}\right), d+d^{\prime}\right)$. Let $(x, y, z, 0) \in H_{1}$. Then H_{1} is a subgroup of A because $(x, y, z, 0)^{-1}=(-x,-y, x y-z, 0) \in A$ and

$$
(x, y, z, 0) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, 0\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}, 0\right) \in A
$$

Then it is simple to show that the Heisenberg group H_{1} is a normal subgroup of A and that $A / G=\{(0,0,0, d) \in A\}$. Therefore, we have the following exact sequence

$$
e \rightarrow H_{1} \rightarrow A \rightarrow\{(0,0,0, d)\} \rightarrow e
$$

Cocycles

Definition

Let N be an abelian group. Given a group H, a 2-cocycle of H having values in N is a mapping ω from $H \times H$ to N satisfying the following cocycle identity

$$
\omega(r, s) \omega(r s, t)=\omega(s, t) \omega(r, s t) \forall r, s, t \in H .
$$

Often, it is further assumed that $\omega(1, s)=\omega(s, 1)=1$ for all $s \in H$.

Definition

Let N be an abelian group. Given a group H, a 2-cocycle of H having values in N is a mapping ω from $H \times H$ to N satisfying the following cocycle identity

$$
\omega(r, s) \omega(r s, t)=\omega(s, t) \omega(r, s t) \forall r, s, t \in H
$$

Often, it is further assumed that $\omega(1, s)=\omega(s, 1)=1$ for all $s \in H$.

Proposition

If we have a suitable 2-cocycle $\omega: H \times H \rightarrow N$, then we can use it to define a group $N \times H$ with group multiplication defined by

$$
(m, s) \times_{\omega}(n, t)=(m n \omega(s, t), s t)
$$

Definition

A bilinear form is a map $B: V \times V \rightarrow F$ where V is a vector space and F a field with the following properties for all $u, v \in F$ and λ fixed in F.
(1) $B\left(u+u^{\prime}, v\right)=B(u, v)+B\left(u^{\prime}, v\right)$
(2) $B\left(u, v+v^{\prime}\right)=B(u, v)+B\left(u, v^{\prime}\right)$
(3) $B(\lambda u, v)=B(u, \lambda v)=\lambda B(u, v)$

Definition

A bilinear form is a map $B: V \times V \rightarrow F$ where V is a vector space and F a field with the following properties for all $u, v \in F$ and λ fixed in F.
(1) $B\left(u+u^{\prime}, v\right)=B(u, v)+B\left(u^{\prime}, v\right)$
(2) $B\left(u, v+v^{\prime}\right)=B(u, v)+B\left(u, v^{\prime}\right)$
(3) $B(\lambda u, v)=B(u, \lambda v)=\lambda B(u, v)$

Definition

An alternating bilinear map is a bilinear map B such that $B(u, v)=-B(v, u)$ for all u, v in V.

Definition

A bilinear form is a map $B: V \times V \rightarrow F$ where V is a vector space and F a field with the following properties for all $u, v \in F$ and λ fixed in F.
(1) $B\left(u+u^{\prime}, v\right)=B(u, v)+B\left(u^{\prime}, v\right)$
(2) $B\left(u, v+v^{\prime}\right)=B(u, v)+B\left(u, v^{\prime}\right)$
(3) $B(\lambda u, v)=B(u, \lambda v)=\lambda B(u, v)$

Definition

An alternating bilinear map is a bilinear map B such that $B(u, v)=-B(v, u)$ for all u, v in V.

Definition

For finite dimensions, a bilinear form is nondegenerate if and only if $B(u, v)=0$ for all $v \in V$ implies that $u=0$.

Proposition

If α is a nondegenerate alternating \mathbb{R}-bilinear form $\mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ then the $(2 n+1)$-dimensional Heisenberg group H_{n}^{α} fits into an exact sequence

$$
e \rightarrow \mathbb{R} \rightarrow H_{n}^{\alpha} \rightarrow \mathbb{R}^{2 n} \rightarrow e
$$

and is the set of pairs $(t, v) \in \mathbb{R} \times \mathbb{R}^{2 n}$, with the group operation defined as

$$
\left(t_{1}, v_{1}\right)\left(t_{2}, v_{2}\right)=\left(t_{1}+t_{2}+\alpha\left(v_{1}, v_{2}\right), v_{1}+v_{2}\right)
$$

Example

Let $z \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$ with $\alpha_{1}\left(v, v^{\prime}\right)=\alpha_{1}((x, y),(n, m))=x m-y n . \alpha_{1}$ is an alternating nondegenerate bilinear form.

Example

Let $z \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$ with $\alpha_{1}\left(v, v^{\prime}\right)=\alpha_{1}((x, y),(n, m))=x m-y n$. α_{1} is an alternating nondegenerate bilinear form.
Therefore, by the last proposition, we have a group multiplication on \mathbb{R}^{3} with identity element $(0,0,0)$ and $(x, y, z)^{-1}=(-x,-y,-z)$ with our group operation defined by

$$
\begin{aligned}
& \left(z_{1}, v_{1}\right)\left(z_{2}, v_{2}\right) \\
& =\left(z_{1},\left(x_{1}, y_{1}\right)\right)\left(z_{2},\left(x_{2}, y_{2}\right)\right) \\
& =\left(z_{1}+z_{2}+\alpha_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right),\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \\
& =\left(z_{1}+z_{2}+x_{1} y_{2}-x_{2} y_{1},\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right) .
\end{aligned}
$$

In fact, this group is isomorphic to H_{1}.

In fact, this group is isomorphic to H_{1}.
Proof. Let $(z, x, y),\left(z^{\prime}, x^{\prime}, y^{\prime}\right) \in G$. Define a map $\phi: G \rightarrow H_{1}$ with $\phi((z, x, y))=(z+x y, \sqrt{2} x, \sqrt{2} y)$. Then ϕ is a homomorphism because

$$
\begin{aligned}
& \phi\left((z, x, y)\left(z^{\prime}, x^{\prime}, y^{\prime}\right)\right) \\
& =\phi\left(z+z^{\prime}+x y^{\prime}-y x^{\prime}, x+x^{\prime}, y+y^{\prime}\right) \\
& =\left(z+z^{\prime}+x y^{\prime}-y x^{\prime}+x y+x^{\prime} y+x y^{\prime}+x^{\prime} y^{\prime}, \sqrt{2}\left(x+x^{\prime}\right), \sqrt{2}\left(y+y^{\prime}\right)\right) \\
& =\left(z+x y+z^{\prime}+x^{\prime} y^{\prime}+2 x y^{\prime}, \sqrt{2}\left(x+x^{\prime}\right), \sqrt{2}\left(y+y^{\prime}\right)\right) \\
& =(z+x y, \sqrt{2} x, \sqrt{2} y)\left(z^{\prime}+x^{\prime} y^{\prime}, \sqrt{2} x^{\prime}, \sqrt{2} y^{\prime}\right) \\
& =\phi((z, x, y)) \phi\left(\left(z^{\prime}, x^{\prime}, y^{\prime}\right)\right) .
\end{aligned}
$$

Furthermore, ϕ is one-to-one because if we set $\phi(z, x, y)=\phi(c, a, b)$ then we have $(z+x y, \sqrt{2} x, \sqrt{2} y)=(c+a b, \sqrt{2} a, \sqrt{2} b)$, which implies that $(z, x, y)=(c, a, b) . \phi$ is also onto since for every $(z, x, y) \in H_{1}$ there is an $\left(z-\frac{x y}{2}, \frac{1}{\sqrt{2}} x, \frac{1}{\sqrt{2}} y\right) \in G$ such that $\phi\left(z-\frac{x y}{2}, \frac{1}{\sqrt{2}} x, \frac{1}{\sqrt{2}} y\right)=(z, x, y)$. Therefore, ϕ is an isomorphism as we wished to show.

Example

Let $z \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$ with $\alpha_{2}\left(v_{1}, v_{2}\right)=\alpha_{2}\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=a \cdot b^{\prime}$. Then we have a group call it D with identity element $(0,0,0)$ and $(x, y, z)^{-1}=(-x,-y, x y-z)$ with group multiplication defined by

$$
\begin{aligned}
& \left(c, v_{1}\right)\left(c^{\prime}, v_{2}\right) \\
& =(c,(a, b))\left(c^{\prime},\left(a^{\prime}, b^{\prime}\right)\right) \\
& =\left(c+c^{\prime}+\alpha_{2}\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right),(a, b)+\left(a^{\prime}, b^{\prime}\right)\right) \\
& =\left(c+c^{\prime}+a \cdot b^{\prime},\left(a+a^{\prime}, b+b^{\prime}\right)\right) .
\end{aligned}
$$

Example

Let $z \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$ with $\alpha_{2}\left(v_{1}, v_{2}\right)=\alpha_{2}\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=a \cdot b^{\prime}$. Then we have a group call it D with identity element $(0,0,0)$ and $(x, y, z)^{-1}=(-x,-y, x y-z)$ with group multiplication defined by

$$
\begin{aligned}
& \left(c, v_{1}\right)\left(c^{\prime}, v_{2}\right) \\
& =(c,(a, b))\left(c^{\prime},\left(a^{\prime}, b^{\prime}\right)\right) \\
& =\left(c+c^{\prime}+\alpha_{2}\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right),(a, b)+\left(a^{\prime}, b^{\prime}\right)\right) \\
& =\left(c+c^{\prime}+a \cdot b^{\prime},\left(a+a^{\prime}, b+b^{\prime}\right)\right) .
\end{aligned}
$$

This group operation is the same as the matrix multiplication of matrices in the Heisenberg group, so D and the Heisenberg group are isomorphic.

Theorem 6.7 of A.M. DuPre's paper "Real Heisenberg Group Extension Isomophism Classes" states the following.

Theorem

Every 2-cocycle on the Heisenberg Group H_{1} can be written in the form

$$
\lambda_{1}\left(x^{2} y^{\prime}+2 x z^{\prime}\right)+\lambda_{2}\left(y^{2} x^{\prime}-x\left(y^{\prime}\right)^{2}+4 y x^{\prime} y^{\prime}-2 x y y^{\prime}-6 y z^{\prime}\right)
$$

for fixed $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.

Example

Let N an abelian group. Using the equation in Theorem 2.9, set $\lambda_{1}=2$ and $\lambda_{2}=3$. Then define the map $\beta: H_{1} \times H_{1} \rightarrow N$ with

$$
\begin{gathered}
\beta\left((x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)= \\
2\left(x^{2} y^{\prime}+2 x z^{\prime}\right)+3\left(y^{2} x^{\prime}-x\left(y^{\prime}\right)^{2}+4 y x^{\prime} y^{\prime}-2 x y y^{\prime}-6 y z^{\prime}\right) .
\end{gathered}
$$

Example

Let N an abelian group. Using the equation in Theorem 2.9, set $\lambda_{1}=2$ and $\lambda_{2}=3$. Then define the map $\beta: H_{1} \times H_{1} \rightarrow N$ with

$$
\begin{gathered}
\beta\left((x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)= \\
2\left(x^{2} y^{\prime}+2 x z^{\prime}\right)+3\left(y^{2} x^{\prime}-x\left(y^{\prime}\right)^{2}+4 y x^{\prime} y^{\prime}-2 x y y^{\prime}-6 y z^{\prime}\right) .
\end{gathered}
$$

Since it can be shown that β is a 2-cocycle satisfying the cocycle identity, Proposision 2.2 gives that there is a group operation on $H_{1} \times N$. Let $x, y, z, d \in H_{1} \times N$. Then $H_{1} \times N$ has group operation defined by

$$
\begin{aligned}
& (x, y, z, d)\left(x^{\prime}, y^{\prime}, z^{\prime}, d^{\prime}\right) \\
& =\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}, d+d^{\prime}+\beta\left((x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)\right) \\
& =\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right. \\
& \left.d+d^{\prime}+2\left(x^{2} y^{\prime}+2 x z^{\prime}\right)+3\left(y^{2} x^{\prime}-x\left(y^{\prime}\right)^{2}+4 y x^{\prime} y^{\prime}-2 x y y^{\prime}-6 y z^{\prime}\right)\right)
\end{aligned}
$$

with identity element $(0,0,0,0)$ and

$$
(x, y, z, d)^{-1}=\left(-x,-y,-z+x y,-d-2\left(x^{2} y-2 x z+9 y z-3 x y^{2}\right)\right)
$$

The following theorem is arguably DuPre's most important result.

Theorem

Any two non-trivial, one-dimensional central extension of the Heisenberg H_{1} group yield isomorphic groups.

