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Definition
The Heisenberg Group, often denoted by H1, is the group of 3× 3 matrices
consisting of elements of the form 1 x z

0 1 y
0 0 1


in R3 which we will denote (x , y , z). Thus, the identity element e is
(0, 0, 0).
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Then we can define

(x , y , z) · (x ′, y ′, z ′) =

 1 x z
0 1 y
0 0 1

 ·
 1 x ′ z ′

0 1 y ′

0 0 1

 = 1 x + x ′ z + z ′ + xy ′

0 1 y + y ′

0 0 1


which is written (x + x ′, y + y ′, z + z ′ + xy ′).
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The Heisenberg Group can also be thought of in higher dimensions. The
Heisenberg group of 2n + 1 dimensions in R2n+1 is usually denoted Hn and
is the group of matrices under matrix multiplication consisting of elements
of the form  1 x z

0 In y
0 0 1

 ,

with x a row vector of length n, y a column vector of length n, and In the
identity matrix of n dimensions.
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Example
Let n,m, x , y , z ∈ R. H2, the 5-dimensional Heisenberg group is the group
of matrices with elements of the form

1 x1 x2 z
0 1 0 y1
0 0 1 y2
0 0 0 1

 ,

we will denote this element (x1, x2, y1, y2, z). Then the identity element of
H2 is (0, 0, 0, 0, 0) and
(x1, x2, y1, y2, z)−1 = (−x1,−x2,−y1,−y2, x1y1 + x2y2 − z).
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Example
As for group multiplication we have

(x1, x2, y1, y2, z)(x ′1, x
′
2, y
′
1, y
′
2, z
′)

=


1 x1 x2 z
0 1 0 y1
0 0 1 y2
0 0 0 1




1 x ′1 x ′2 z ′

0 1 0 y ′1
0 0 1 y ′2
0 0 0 1



=


1 x1 + x ′1 x2 + x ′2 z + z ′ + x1x2 + y1y2
0 1 0 y1 + y ′1
0 0 1 y2 + y ′2
0 0 0 1


= (x1 + x ′1, x2 + x ′2, y1 + y ′1, y2 + y ′2, z + z ′ + x1y ′1 + x2y ′2).
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Group Extensions
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Definition
An extension of a group H by a group N is a group G with a normal
subgroup M such that M ∼= N and G/M ∼= H. This information can be
encoded into a short exact sequence of groups

1→ N → G → H → 1,

where α : N → G is injective and β : G → H is surjective. Also, the image
of α is the kernel of β.

In other words, if G is an extension of H by N then N is a normal subgroup
of G and the quotient group G/N is isomorphic to group H.

Laura Janssen (UNL) Extensions of the Heisenberg Group July 22, 2009 9 / 23



Definition
An extension of a group H by a group N is a group G with a normal
subgroup M such that M ∼= N and G/M ∼= H. This information can be
encoded into a short exact sequence of groups

1→ N → G → H → 1,

where α : N → G is injective and β : G → H is surjective. Also, the image
of α is the kernel of β.

In other words, if G is an extension of H by N then N is a normal subgroup
of G and the quotient group G/N is isomorphic to group H.

Laura Janssen (UNL) Extensions of the Heisenberg Group July 22, 2009 9 / 23



Definition
An extension is called a central extension if the normal subgroup N of G
lies in the center of G .

Example
Consider a group N consisting of elements of the form 1 0 z

0 1 y
0 0 1

 .
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Example
Then N is a subgroup of the Heisenberg group H1 since 1 0 z

0 1 y
0 0 1

−1

=

 1 0 −z
0 1 −y
0 0 1


which is clearly in N and 1 0 z

0 1 y
0 0 1

 ·
 1 0 z ′

0 1 y ′

0 0 1

 =

 1 0 z + z ′

0 1 y + y ′

0 0 1


which is also in N.
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Example
Furthermore, N is a normal subgroup of H1 because

=

 1 a c
0 1 b
0 0 1

 ·
 1 0 z

0 1 y
0 0 1

 ·
 1 a c

0 1 b
0 0 1

−1

=

 1 a c
0 1 b
0 0 1

 ·
 1 0 z

0 1 y
0 0 1

 ·
 1 −a ab − c

0 1 −b
0 0 1


=

 1 0 z − ay
0 1 y
0 0 1

 ∈ N.

Since H1/N ∼= {(x , 0, 0) ∈ H1}, we can construct an exact sequence of
groups.

e → N → H1 → {(x , 0, 0)} → e
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Example

Now consider a group A in R4 with elements of the form (x , y , z , d). The
group multiplication is defined by
(x , y , z , d) ·(x ′, y ′, z ′, d ′) = (ed ′

x+x ′, e−d ′
y+y ′, z+z ′+ed ′

(x ·y ′), d+d ′).

Let (x , y , z , 0) ∈ H1. Then H1 is a subgroup of A because
(x , y , z , 0)−1 = (−x ,−y , xy − z , 0) ∈ A and

(x , y , z , 0) · (x ′, y ′, z ′, 0) = (x + x ′, y + y ′, z + z ′ + xy ′, 0) ∈ A.

Then it is simple to show that the Heisenberg group H1 is a normal
subgroup of A and that A/G = {(0, 0, 0, d) ∈ A}. Therefore, we have the
following exact sequence

e → H1 → A→ {(0, 0, 0, d)} → e.
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Cocycles
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Definition
Let N be an abelian group. Given a group H, a 2-cocycle of H having
values in N is a mapping ω from H × H to N satisfying the following
cocycle identity

ω(r , s)ω(rs, t) = ω(s, t)ω(r , st)∀r , s, t ∈ H.

Often, it is further assumed that ω(1, s) = ω(s, 1) = 1 for all s ∈ H.

Proposition
If we have a suitable 2-cocycle ω : H × H → N, then we can use it to
define a group N × H with group multiplication defined by

(m, s)×ω (n, t) = (mnω(s, t), st).
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Definition
A bilinear form is a map B : V × V → F where V is a vector space and F
a field with the following properties for all u, v ∈ F and λ fixed in F .

1 B(u + u′, v) = B(u, v) + B(u′, v)

2 B(u, v + v ′) = B(u, v) + B(u, v ′)
3 B(λu, v) = B(u, λv) = λB(u, v)

Definition
An alternating bilinear map is a bilinear map B such that
B(u, v) = −B(v , u) for all u, v in V .

Definition
For finite dimensions, a bilinear form is nondegenerate if and only if
B(u, v) = 0 for all v ∈ V implies that u = 0.
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Proposition

If α is a nondegenerate alternating R-bilinear form R2n × R2n → R then
the (2n + 1)-dimensional Heisenberg group Hα

n fits into an exact sequence

e → R→ Hα
n → R2n → e

and is the set of pairs (t, v) ∈ R×R2n, with the group operation defined as

(t1, v1)(t2, v2) = (t1 + t2 + α(v1, v2), v1 + v2).
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Example

Let z ∈ R and v ∈ R2 with α1(v , v ′) = α1((x , y), (n,m)) = xm− yn. α1 is
an alternating nondegenerate bilinear form.

Therefore, by the last proposition, we have a group multiplication on R3

with identity element (0, 0, 0) and (x , y , z)−1 = (−x ,−y ,−z) with our
group operation defined by

(z1, v1)(z2, v2)

= (z1, (x1, y1))(z2, (x2, y2))

= (z1 + z2 + α2((x1, y1), (x2, y2)), (x1, y1) + (x2, y2))

= (z1 + z2 + x1y2 − x2y1, (x1 + x2, y1 + y2)).
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In fact, this group is isomorphic to H1.

Proof. Let (z , x , y), (z ′, x ′, y ′) ∈ G . Define a map φ : G → H1 with
φ((z , x , y)) = (z + xy ,

√
2x ,
√
2y). Then φ is a homomorphism because

φ((z , x , y)(z ′, x ′, y ′))
= φ(z + z ′ + xy ′ − yx ′, x + x ′, y + y ′)

= (z + z ′ + xy ′ − yx ′ + xy + x ′y + xy ′ + x ′y ′,
√
2(x + x ′),

√
2(y + y ′))

= (z + xy + z ′ + x ′y ′ + 2xy ′,
√
2(x + x ′),

√
2(y + y ′))

= (z + xy ,
√
2x ,
√
2y)(z ′ + x ′y ′,

√
2x ′,
√
2y ′)

= φ((z , x , y))φ((z ′, x ′, y ′)).

Furthermore, φ is one-to-one because if we set φ(z , x , y) = φ(c , a, b) then
we have (z + xy ,

√
2x ,
√
2y) = (c + ab,

√
2a,
√
2b), which implies that

(z , x , y) = (c , a, b). φ is also onto since for every (z , x , y) ∈ H1 there is an
(z − xy

2 ,
1√
2
x , 1√

2
y) ∈ G such that φ(z − xy

2 ,
1√
2
x , 1√

2
y) = (z , x , y).

Therefore, φ is an isomorphism as we wished to show. �
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Example

Let z ∈ R and v ∈ R2 with α2(v1, v2) = α2((a, b), (a′, b′)) = a · b′. Then
we have a group call it D with identity element (0, 0, 0) and
(x , y , z)−1 = (−x ,−y , xy − z) with group multiplication defined by

(c , v1)(c ′, v2)

= (c , (a, b))(c ′, (a′, b′))
= (c + c ′ + α2((a, b), (a′, b′)), (a, b) + (a′, b′))
= (c + c ′ + a · b′, (a + a′, b + b′)).

This group operation is the same as the matrix multiplication of matrices in
the Heisenberg group, so D and the Heisenberg group are isomorphic.
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Theorem 6.7 of A.M. DuPre’s paper "Real Heisenberg Group Extension
Isomophism Classes" states the following.

Theorem
Every 2-cocycle on the Heisenberg Group H1 can be written in the form

λ1(x2y ′ + 2xz ′) + λ2(y2x ′ − x(y ′)2 + 4yx ′y ′ − 2xyy ′ − 6yz ′)

for fixed λ1, λ2 ∈ R.
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Example
Let N an abelian group. Using the equation in Theorem 2.9, set λ1 = 2
and λ2 = 3. Then define the map β : H1 × H1 → N with

β((x , y , z)(x ′, y ′, z ′)) =
2(x2y ′ + 2xz ′) + 3(y2x ′ − x(y ′)2 + 4yx ′y ′ − 2xyy ′ − 6yz ′).

Since it can be shown that β is a 2-cocycle satisfying the cocycle identity,
Proposision 2.2 gives that there is a group operation on H1 × N. Let
x , y , z , d ∈ H1 × N. Then H1 × N has group operation defined by

(x , y , z , d)(x ′, y ′, z ′, d ′)
= (x + x ′, y + y ′, z + z ′ + xy ′, d + d ′ + β((x , y , z)(x ′, y ′, z ′)))
= (x + x ′, y + y ′, z + z ′ + xy ′,

d + d ′ + 2(x2y ′ + 2xz ′) + 3(y2x ′ − x(y ′)2 + 4yx ′y ′ − 2xyy ′ − 6yz ′)),

with identity element (0, 0, 0, 0) and

(x , y , z , d)−1 = (−x ,−y ,−z + xy ,−d − 2(x2y − 2xz + 9yz − 3xy2)).
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The following theorem is arguably DuPre’s most important result.

Theorem
Any two non-trivial, one-dimensional central extension of the Heisenberg
H1 group yield isomorphic groups.
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