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Cayley Graphs

Let G be a group. Let S be a set of elements in G

Cay(G{S}) is the Cayley graph of G with the letters S

Definition

Cayley Graph: V (Cay(G{S})) = {g ∈ G} and
{g1, g2} ∈ E (Cay(G{S})) iff g1 · s = g2 for some s.

Definition

Characteristic Polynomial and

Spectrum: The characteristic polynomial
and spectrum of a Cayley graph is the
characteristic polynomial and spectrum of
its adjacency matrix.
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Roots of Unity and Characteristic Polynomials

Definition

Root of Unity: ωn is the nth root of unity. This means that
ωn

n = 1. Roots of unity are evenly spaced on the unit circle in the
complex plane.

Definition

Characteristic Polynomials: Φn(x) is the nth characteristic
polynomial. It is a polynomial whose roots are ωk

n , whre k is
relatively prime to n.
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Lazenby’s Theorem

Theorem

The eigen values of Cay(Zn, {S}) are

λx =
�

s∈S

ωxs
n

where x: 1, 2, ... n

The spectrum of Cay(Z6, {1, 2} is
ω + ω2, ω2 + ω4, ω3 + ω6,
ω4 + ω2, ω5 + ω4, ω6 + ω6
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Characteristic Polynomial of Cay(Zn, {s})

Theorem

χ(Cay(Zn, {s})) =
�

k| n
GCD(n,s)

(Φk(x))GCD(n,s)

Outline of Proof:

From Lazenby’s Theorem we have λx = ωxs
n x: 1, 2, ... n

When s is relatively prime to n we get every root of unity

The polynomial that gives every nth root of unity is�
k|n Φk(x)

When GCD(s, x) = q we will get every q
n root of unity q times

We can modify our polynomial to just give us these roots�
k| n

GCD(n,s)
Φk(x) and show the multiplicity

�
k| n

GCD(n,s)
(Φk(x))GCD(n,s)
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Direct Product of Cyclic Groups

Lemma

Cay(Zn ⊕ Zm, {(s, r)}) ∼= Cay(Zn·m, {q})

Where ν = n
GCD(n,s) µ = m

GCD(m,r) q = n·m
LCM(ν,µ)
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Proof of Lemma

Outline of Proof:

Show the graphs have the same number of vertices

Both groups have n · m elements

Show the graphs have the same number of disjoint cycles

LHS: We treat the direct product as two separate cycles.
One cycle is Zn, {s} and the other is Zm, {r}
Multiplying by (s,r) moves one vertex along each cycle.
We can show that the number of moves required to complete
a cycles is ν in Zn, {s} and µ in Zm.
To reach the begining of both cycles at the same time takes
LCM(ν, µ) moves.
So there are n·m

LCM(ν,µ) disjoint cycles in with length LCM(ν, µ).

RHS: Cay(Zn·m, {q}) has q cycles of length nm
q but

q = n·m
LCM(ν,µ) , so there are n·m

LCM(ν,µ) cycles of length

LCM(ν, µ).
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How Cayley Graphs of Zn ⊕ Zm and Znm Relate

Theorem

Cay(Zn ⊕ Zm, {(s1, r1), (s1, r2), (s2, r1)...(si , rj)}) ∼=

Cay(Zn∗m, {q(s1,r1)...q(si ,rj )})

where q(si ,rj) = n∗m
LCM(νsi ,µrj )

νsi = n
GCD(n,si) and µrj = m

GCD(m,rj)

The proof of this theorem is similar to the proof of the lemma.
First show that the vertex set is the same, and then show that the
graphs have the same type of cycles.

This theorem is important because isomorphic graphs have the
same characteristic polynomial, and I already found the
characteristic polynomial of Cay(Zn,S).
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Semidirect Products and the Dihedral Group

The semidirect product is a more complex way of multiplying a
group. The dihedral group is a semidirect product of cyclic groups.

Definition

Z2 � Zn = D2n =
�
x , y : x

n = e, y2 = e, yxy = x
−1

�

There are two basic sets of elements Sx = {d ∈ Dn|d = x
a
y

0} and
Sy = {d ∈ Dn|d = x

a
y

1}.

x
a · xb = x

a+b

x
a · xb

y = x
a+b

y

x
a
y · xb

y = x
a−b

x
a
y · xb = x

a−b
y
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Cayley Graphs of Dihedral Groups and Cyclic Groups

Theorem

Cay(D2n{xa
y

α, xb
y

β}) ∼=






Cay(Z2n, {2a, 2b}) α, β = 0

Cay(Z2n{ +2n
|xay ,xby | ,

−2n
|xay ,xby |}) α, β = 1

�GCD(a,n)
1 Cay(D 2n

GCD(a,n)
{x , y}) α = 0

β = 1
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Case One

Cay(D2n{xa, xb}) ∼= Cay(Z2n, {2a, 2b})

x
a · xb = x

a+b
x

a · xb
y = x

a+b
y

Outline of Proof:

multiplying by x
a splits the dihedral group into two sections

each section acts just like the cyclic group
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Case Two

Cay(D2n{xa
y

α, xb
y

β}) ∼= Cay(Z2n{ +2n
|xay ,xby | ,

−2n
|xay ,xby |})

x
a
y · xb

y = x
a−b

x
a
y · xb = x

a−b
y

Outline of Proof:

multiplying by sy goes between the two sets Sy and Sx

this makes a bipartite graph, which just creates cycles of the
order of x

a
y

α, xb
y

β
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Case Three

Cay(D2n{xa, xb
y

β}) ∼=
�GCD(a,n)

1 Cay(D 2n
GCD(a,n)

{x , y})

This is important because the characteristic polynomial of
Cay(D2n{x , y}) is known.
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Semidirect Products of Prime Cyclic Groups

You can also take the semidirect product of some prime cyclic
groups to create new groups. I am currently working on finding the
characteristic polynomial of these groups.

Preliminary Results

χ(Cay(Hp1p2{xa
y

α, xb
y

β})) ∼=






�p1
1 Cay(Zp2{a, ..., b}) α, β = 0

χ(Cay(Zp1{α, β}))f (λ) α, β = 1

? α = 0

β = 1
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