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Riemann Zeta Function

• Riemann Zeta Function(Basic Definition)

ζ(s) =
∞∑

n=1

1

ns
, s ∈ C.

• Riemann Zeta Function(Euler Product)

ζ(s) =
∏
p∈P

1

1− p−s
.

• Riemann Hypothesis

If ζ(s) = 0 where 0 < Re(s) < 1, then Re(s) = 1/2. This is to say
that all non-trivial zeros of ζ are on the critical line.
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Ihara Zeta Function

The Ihara-Zeta Function for a finite, connected graph G with no
degree 1 vertices is defined as

ZG (u) =
∏
p∈P

1

1− u`(p)
,

for |u| small, and where the product is taken over all prime cycles
p of G and `(p) is the length of cycle p.

This clearly resembles the Riemann Zeta Function,

ζ(s) =
∏
p∈P

1

1− p−s
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Ihara Zeta Function

Bass’ Formula for the Ihara Zeta Function
Bass continued developing the definition of the Ihara Zeta
Function by redefining it in terms of the regular adjacency matrix
for a finite graph

ZG (u)−1 = (1− u2)(ε−υ)det
(
In − uA + u2Q),

where A is the adjacency matrix of G, ε is the number of edges,
and υ is the number of vertices. Q is a diagonal matrix such that
the jth diagonal entry is equal to the degree of the jth vertex
minus one.



Extension to Infinite Graphs

The Ihara Zeta Function ζX (t) for a finite graph X satisfies the
relation,

lnζX (t) =
∞∑

r=1

cr

r
tr ,

where cr is the number of closed, oriented loops of length r in the
graph X.



Extension to Infinite Graphs

Definition (Grigorchuk and Zuk)

Let X = limn→∞Xn where Xn is a sequence of k-regular graphs
such that the limit of c̃r = cr (Xn)/|Xn| exists when n→∞. The
zeta function ζX (t) of the graph X, with respect to the sequence
{Xn}, is defined by

lnζX (t) = limn→∞
1

|Xn|
lnζXN

(t) =
∞∑

r=1

c̃r t
r/r .

This series has a nontrivial interval of convergence of at least 1/k
around 0.



Graph Covers

In order to determine the the Ihara Zeta Function of an infinite
graph, we will define covering graphs to form sequences of graphs.

Definition
A covering map from a group G to another group H satisfies the
following mapping where V denotes the vertex set,

p : V (G )→ V (H),

such that

1. if ui ∼ uj , then p(ui ) ∼ p(uj), and

2. p|N(u) : N(u)→ N(p(u)) forms a bijection where
N(u) = {ui |u ∼ ui}.
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Covering Graphs

Example

Suppose that G is a group with generating set S. The symmetric
(S = S−1) Cayley Graph, Cay(G ,S) is a graph such that

1. Each element g ∈ G is assigned a vertex in the vertex set
V (G )

2. For any g ∈ G , s ∈ S , the vertices g and gs are joined by a
line. Therefore the edge set E (G ) consists of pairs of the form
(g , gs).

If ∃ a surjective homomorphism G −→ H, then the map

p : Cay(G ,S) −→ Cay(H, p(S))

is a covering map.
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Graph Covers

Voltage Assignment

The purpose of having a voltage assignment is to have a way of
constructing a graph bundle, or more specifically for our case a
graph cover. We will use them to determine the Zeta Function of a
covering graph.

Essentially it is a labeling of the edges of the base graph with
elements from a group Ω which form the graph bundle.

We will let the graph covers form naturally and retrieve the voltage
assignment.
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Method for Determining the Ihara Zeta Function

From Chae and Lee,

Theorem
Let Ω = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znl

and let φ be a Ω-voltage assignment
of G. Then, the adjacency matrix of a regular covering graph
G ×φ Ω is ∑

(k1,··· ,kl )

A
(
~G
φ,(ρ

k1
1 ,··· ,ρ

kl
l )

)
⊗ P

(
ρk1
1 , · · · , ρ

kl
l

)
,

where P
(
ρk1
1 , · · · , ρ

kl
l

)
is the permutation matrix associated with(

ρk1
1 , · · · , ρ

kl
l

)
.



PSL2(Z)

Motivation of Project

The modular group often seen as PSL2(Z) or SL2(Z) is a
fundamental object of study in number theory and has many
connections to other areas of mathematics.

We hope that finding the zeta function of the modular group will
give us more insight on this important group.

To accomplish this, we will set up sequences of quotient groups,
which will be associated with a sequence of Cayley graphs.



PSL2(Z)

Set-up

Let Γ = PSL2(Z) and

Γn = ker
(
PSL2(Z) −→ PSL2(Z/2n)

)
, for each n ≥ 1.

It is known that PSL2(Z)/Γn ' PSL2(Z/2n). Therefore, we can
form quotient groups Γ/Γn, from which we will construct Cayley
graphs.
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PSL2(Z)

Consider the Cayley Graph of the quotient group denoted by
Cay(Γ/Γn,S), where

S =

{(
1 1
0 1

)
,

(
1 −1
0 1

)
,

(
0 −1
1 0

)}
is the generating set of the Cayley graph.



PSL2

(
Z
)

The following Cayley graphs induce a covering map since there is a
surjective map π : Γ/Γn+1 −→ Γ/Γn,

π : Cay
(
Γ/Γn+1,S

)
−→ Cay

(
Γ/Γn,S

)
Each vertex of the graph will represent an element in the
subgroups. The graphs will be 3-regular because there are three
generators for each subgroup. Note that the voltage assignment
for these coverings will always come from
Ω = Γn/Γn+1 = Z/2Z⊕ Z/2Z⊕ Z/2Z.
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Current Status

Currently trying to generalize the sequence of graph covers by
generalizing the subgraphs ~G .

A
(
~G
φ,(ρ

k1
1 ,··· ,ρ

kl
l )

)


