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Abstract

The spectrum of a graph is the set of eigenvalues of its adjacency
matrix. A group, together with a multiset of elements of the group,
gives a Cayley graph, and a semidirect product provides a method
of producing new groups. This paper compares the spectra of cyclic
groups to those of their semidirect products, when the products exist.
It was found that many of the interesting identities that result can
be described through number theory, field theory, and representation
theory. The main result of this paper gives a formula that can be used
to find the spectrum of semidirect products of cyclic groups.

1 Introduction
Given a graph, its spectrum is defined as the set of eigenvalues of its adjacency
matrix. The adjacency matrix encodes all of the information about a graph
in a compact form. A group, together with a multiset of elements, gives
a Cayley graph. Semidirect products are an interesting way of producing
small, non-abelian groups. The semidirect products that we will consider
are built from cyclic groups. We will examine the spectra of cyclic groups
as well as those of their semidirect products, when the products exist. Our
main technical result (Theorem 4.1) is a general formula which factors the
characteristic polynomial of the adjacency matrix of the Cayley graph of a
semidirect product of cyclic groups as a product of characteristic polynomials
of some simple matrices, as follows:

χ (A (C (Z/nok Z/m, S))) =
n−1∏
i=0

χ

 ∑
xayb∈S

Ωia (Cm)b

 .

1This reasearch was carried out at Canisius College with funding from the National
Science Foundation. The author would like to thank Dr. Terrence Bisson for his assistance.
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Here S is an arbitrary set of elements in the group; the notation will be
explained in Section 3.1. Several applications of this result are given; in
particular, Theorem 4.4 seems to be new.

Section 2 will provide some background information on spectra of graphs,
on Cayley graphs, and on semidirect products. Section 3 will discuss how
the adjacency matrices for Cayley graphs relate to representation theory. In
particular we interpret the regular representation of a finite group in terms
of Cayley graphs (the adjacency representation). In the remainder of the
section we describe an isomorphic representation (the natural representation)
for semidirect products of cyclic groups. Section 4 begins with a proof of the
main theorem, and then it presents a number of applications of this theorem.
Finally, Section 5 illustrates an elegant result related to representations and
Cayley graphs, while mentioning potential future extensions of this research.

2 Background
In this paper we work with directed graphs.

Definition 2.1. The adjacency matrix of a directed graph X with n vertices
is an n × n matrix in which the ijth entry is the number of directed edges
from vertex i to vertex j in X, where the vertices in X are numbered from 1
to n.

A major component of algebraic graph theory is the study of the eigenval-
ues of a graph. The eigenvalues of a graph are simply the eigenvalues of the
adjacency matrix of the graph, that is, the roots of the characteristic poly-
nomial of the adjacency matrix. For more information on algebraic graph
theory, see [3], for instance.

An immediate thought is whether the order of the numbering affects the
characteristic polynomial. The answer is that it does not: isomorphic graphs
are isospectral. The converse is not true, however. There are graphs whose
characteristic polynomials are the same, yet they are not isomorphic.

For a graph X, let A (X) denote the adjacency matrix of the graph, and
for a square matrix M , let χ (M) denote the characteristic polynomial of M .

The spectrum of a graph reflects certain properties of the graph. For
example, multiplicities of eigenvalues make implications about symmetries
of the graph. Additionally, the eigenvalues encode information about long
paths. Therefore, it is important to discover methods of computing these
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eigenvalues, or characteristic polynomials, more quickly than building a large
adjacency matrix and taking a determinant. Specifically, we will look at a
type of directed graph that is derived from a group: a Cayley graph.

Definition 2.2. Given a group G and a multiset S such that s ∈ S for all
s ∈ S, the Cayley graph with generators S is a directed graph with one
vertex corresponding to each group element, and for each pair of elements
g1, g2 ∈ G there is an edge from g1 to g2 for each element s ∈ S such that
g1s = g2. Denote this graph as C (G,S).

Note that S generates the graph, but not necessarily the group. The
Cayley graph will be connected if and only if S generates the group. It is
more useful, though, to consider arbitrary multisets of elements of the group.

More specifically, we shall examine Cayley graphs of specific groups that
can be built from less complicated pieces: semidirect products of cyclic
groups.

2.1 Semidirect Products of Groups

In general, spectra of Cayley graphs can be quite complicated. The spectra
of finite abelian groups are known, but comparatively little is known about
the spectra of even the smallest non-abelian groups. The least complicated
non-abelian groups can be built from cyclic groups using a semidirect product.

Definition 2.3. Given two groups G and H and a group homomorphism
ϕ : H −→ Aut (G), the Semidirect Product of G and H with respect to
ϕ, denoted Goϕ H (or, simply, GoH) is a new group with set G×H and
multiplication operation (g1, h1) (g2, h2) = (g1ϕ (h1) g2, h1h2).

In practice, Definition 2.3 can be complicated to use. Luckily, when G
and H are both cyclic, there is a nice presentation. For this paper, we will
use multiplicative notation for cyclic groups, where Z/n is generated by an
element x such that xn = e.

Proposition 2.1. Given cyclic groups Z/n and Z/m, a semidirect product
Z/n o Z/m between them corresponds to a choice of integer k such that
km ≡ 1 (mod n). The semidirect product group is given by Z/n o Z/m =〈
x, y | xn = e, ym = e, yxy−1 = xk

〉
, and will be denoted Z/nok Z/m.
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A proof of this proposition can be found in [2]. The idea is that k gives
a group homomorphism from Z/m to Aut (Z/n).

When constructing an adjacency matrix for a Cayley graph of a semidirect
product of cyclic groups, we will always assume that the vertices are ordered
such that the first row and column of the matrix correspond to the identity,
the next n − 1 rows and columns correspond to powers of x in increasing
order, and then each block of n rows and columns corresponds to the powers
of y in ascending order (and within each block, the powers of x take the same
order).

3 Cayley Graphs and Representations
Representation theory is the study of embedding groups as subgroups of
GLN (F) for some integer N and some field F. The embedding map is a
homomorphism ψ : G −→ GLN (F), and we say that the representation is
faithful if ψ is injective. In this paper, we are mainly concerned with repre-
sentations of groups of order n embedded in GLn (C), or, more specifically,
GLn (Q [ω]) for some root of unity ω. Note that all of the fields that we are
concerned with have characteristic zero.

Given a group G and an element g ∈ G, let Ag = A (C (G, {g})), the
adjacency matrix of the Cayley graph with one generator. Additionally,
given a group G and a multiset S of elements of G, let AS = A (C (G,S)).

Theorem 3.1. Given a group G and an element g ∈ G, consider the set
Γ = {Ag | g ∈ G} and the map ψ : G −→ Γ given by ψ (g) = Ag. Then, ψ
gives a faithful representation for G in GL|G| (Q).

Proof. Consider X = C (G,G) Each matrix in Γ determines a subgraph of
X. Consider two matrices Ag1 , Ag2 ∈ Γ. The matrix Ag1 gives the number
of paths in X of length one from a group element h1 to a group element h2

following only paths corresponding to multiplication by g1. Similarly, Ag1
gives the number of paths in X of length one from a group element h1 to
a group element h2 following only paths corresponding to multiplication by
g2. Thus, Ag1Ag2 gives the number of paths in X of length two from a group
element h1 to a group element h2 following only paths corresponding to a
multiplication by g1 followed by a multiplication by g2. This is equivalent to
following only paths of length one corresponding to multiplication by g1g2.
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Thus, Ag1Ag2 = Ag1g2 . Therefore, it is clear that Γ is a faithful representation
for G with injection ψ.

Based on this theorem, we can define a group representation based on the
adjacency matrices of Cayley graphs.

Definition 3.1. The adjacency representation of a group G is the rep-
resentation given by ψ.

This is called the regular representation in the literature [5]. The next
theorem will allow for simple computation of adjacency matrices when mul-
tiple generators are used.

Theorem 3.2. Given a group G and a multiset S of elements of G,

AS =
∑
s∈S

As.

Proof. The proof is by induction on |S|.
For the base case, |S| = 1. This means that S = {s} for some s ∈ G. It

is obviously true that
AS = As =

∑
r∈{s}

Ar.

Now, as an inductive hypothesis, assume that if |S| < h, then

AS =
∑
s∈S

As.

Let |S| = h. S = T ] {s} for some s ∈ G and some multiset T . Clearly,
every edge in C (G, T ) is present in C (G,S) because T ⊂ S. All of the ad-
ditional edges come from C (G, {s}). Thus, AS = AT +As. By the inductive
hypothesis,

AS = As +
∑
t∈T

At =
∑
s∈S

As

as required.
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3.1 Preliminary Notation and Results

The following definitions and propositions will be extremely important for
the remainder of the paper. They will be used, beginning in the next section,
to describe representations of semidirect products.

Definition 3.2. Let Ch be the h× h matrix with entries

cij =

{
1, when j − i ≡ 1 (mod h)
0, otherwise

.

This matrix is denoted Ch because it is a circulant matrix [?davis]. C
could also denote "cyclic", as Ch is the adjacency matrix for the Cayley graph
of Z/h with S = {x} (where xh = e).

Proposition 3.1. The matrix (Ch)
d is given by

cij =

{
1, when j − i ≡ d (mod h)
0, otherwise

.

Proof. The first part of the proof is by induction on d.
For the base case, let d = 1. The definition of Ch completes the proof of

this case, as (Ch)
1 = Ch.

Now, let b > 1. Assume that (Ch)
b−1 is given by the specified formula.

(Ch)
b = (Ch)

b−1Ch, and entries that are one in this matrix are those where
the ith row of (Ch)

b−1 has a one in the kth column and the kth row of Ch has
a one in the jth column. All other entries are zero. This occurs when{

k − i ≡ b− 1 (mod h)
j − k ≡ 1 (mod h)

.

Solving the first equation for k yields k ≡ b−1+ i (mod h). Substituting this
into the other equation gives j − b+ 1− i ≡ 1 (mod h), or j − i ≡ b (mod h),
as required.

Now, let d < 1. Note that, by the previous steps, (Ch)
h = I. Thus,

(Ch)
d =

(
(Ch)

h
)m
· (Ch)d = (Ch)

mh+d. Since h > 0, there must exist an
integer m such that the quantity mh + d > 0, and this quantity will be
congruent to d modulo h. Thus, the proposition holds for all integers d.
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Definition 3.3. Suppose that m, n, and k satisfy mk ≡ 1 (mod n). For given
h, let let Ωh be the m×m matrix with entries

Ωij =

{
ωhk

i−1
, when i = j

0, otherwise

where ω = e
2πi
n is a primitive nth root of unity.

(In general, the primitive hth root of unity e
2πi
h will be denoted ωh, but

sometimes the subscript will be omitted if the meaning seems clear.)
This matrix is denoted Ωh because it contains roots of unity, which are

denoted by ω.

Proposition 3.2. Powers of the matrix Ωh are given by (Ωh)
a = Ωha

Proof. (Ωh)
a is an m×m matrix with entries

Ωij =

{
ωhak

i−1
, when i = j

0, otherwise
.

This is clearly equal to Ωha.

3.2 Representations of Semidirect Products of Cyclic
Groups

When it is known that G is a semidirect product of cyclic groups, another
representation in GL|G| (C) can be found. This new representation will have a
form such that computation of characteristic polynomials, and hence, eigen-
values, is easier than in the adjacency representation. First, however, it is
useful to examine exactly what form the matrices in the adjacency represen-
tation take. For the following theorem, recall that Ag is the adjacency matrix
of a Cayley graph with one generator.

Let x be a generator for Z/n and y a generator for Z/m.

Theorem 3.3. For a semidirect product Z/nok Z/m, Ax is an m×m block
matrix with n× n matrix entries given by

xij =

{
(Cn)k

i−1

, when i = j
0, otherwise
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and Ay is an m×m block matrix with n× n matrix entries given by

yij =

{
I, when j − i ≡ 1 (mod n)
0, otherwise

.

Proof. Consider the group element g = xayb. gx = xaybx = xa+k
b
yb, so Ax

is in the required form. gy = xayb+1, so Ay is in the required form.

Now, we can find a representation such that computation is easier.

Theorem 3.4. Let X be an n × n block matrix with m ×m matrix entries
given by

xij =

{
Ωi, when i = j
0, otherwise

and let Y be an n× n block matrix with m×m matrix entries given by

yij =

{
Cm, when i = j
0, otherwise

.

The matrices X and Y generate a faithful representation of Z/nokZ/m with
injection ϕ such that ϕ

(
xayb

)
= XaY b.

Proof. We will show that Xn = I, Y m = I, and Y XY −1 = Xk, thereby
precisely showing that ϕ produces a representation. Showing that no smaller
power of X or Y is trivial will show that ϕ is injective.

Xa is an n× n block matrix with m×m matrix entries given by

xij =

{
(Ωi)

a = Ωia, when i = j
0, otherwise

.

Since (Ωh)
n = I for all h by Proposition 3.2, Xn = I. Also, note that Ω1 is

a diagonal matrix containing a primitive nth root of unity in the upper left
corner. Thus, no smaller power of this matrix, and, hence, no smaller power
of X, can be the identity.

Y b is an n× n block matrix with m×m matrix entries given by

yij =

{
(Cm)b , when i = j
0, otherwise

.

Based on Proposition 3.1, Y m = I, and no smaller power of Y is trivial (as
no smaller power of Cm is trivial).
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Y −1 is an n× n block matrix with m×m matrix entries given by

yij =

{
(Cm)−1 , when i = j
0, otherwise

.

Thus, Y XY −1 is an n× n block matrix with m×m matrix entries given by

aij =

{
CmΩi (Cm)−1 , when i = j
0, otherwise

.

To show that this equals Xk it suffices to show that CmΩh (Cm)−1 = Ωhk.
CmΩh is an m×m matrix with entries

aij =

{
ωhk

j−1
, when j − i ≡ 1 (modm)

0, otherwise
.

Multiplying this by (Cm)−1 (as given by Proposition 3.1) yields

aij =

{
ωhk

j
, when i = j

0, otherwise
.

This precisely equals Ωhk, thereby completing the proof.

Definition 3.4. The natural representation of Z/nok Z/m is the repre-
sentation given by ϕ.

We say that two representationsM and N of a group G are isomorphic if
the matricesMg and Ng corresponding to a group element g are similar (that
is, one can be obtained from the other via a change of basis) and for all group
elements, that change of basis is the same. This allows the isomorphism to
be applied to linear combinations of representation matrices as well:

Let P be the change of basis matrix to move from one representation to an
isomorphic one, let A and B be matrices in the first representation, and let A′
and B′ be their corresponding matrices in the second representation (so A′ =
PAP−1 and B′ = PBP−1). Then, for scalars a and b, P (aA+ bB)P−1 =
PaAP−1 + PbBP−1 = aPAP−1 + bPBP−1 = aA′ + bB′, which corresponds
to aA+ bB by the same isomorphism.

Theorem 3.5. The adjacency representation and the natural representation
of Z/nok Z/m are isomorphic group representations.
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Proof. It is well-known that two representations over a field of characteristic
zero are isomorphic if the traces of corresponding matrices are the same [5]. I
will show that tr

(
Axayb

)
= tr

(
XaY b

)
in all cases. Note that xayb = e if and

only if XaY b = I. Clearly tr (Ae) = tr (I) = mn. This proves the identity
case.

Now, consider representations of the element xayb, where xayb 6= e. The
adjacency representation of this element is Axayb . C

(
Z/nok Z/m,

{
xayb

})
has no self-loops, so all of the diagonal entries of Axayb are zero. Thus,
tr
(
Axayb

)
= 0. The natural representation of this element is XaY b. Clearly,

Xa has matrix entries given by

xij =

{
(Ωi)

a = Ωia, when i = j
0, otherwise

and Y b has matrix entries given by

yij =

{
(Cm)b , when i = j
0, otherwise

.

Thus, XaY b has matrix entries given by

xyij =

{
(Ωi)

a (Cm)b = Ωia (Cm)b , when i = j
0, otherwise

.

Clearly, if b 6≡ 0 (modm), this matrix has zeroes down the diagonal, and,
therefore, has trace 0.

Consider the case where b = 0. I will show that tr (Xa) = 0 (if a 6≡
0 (mod n)).

tr (Xa) =
n−1∑
i=0

tr (Ωia) =
n−1∑
i=0

m−1∑
j=0

ωiak
j

.

Now, assume that iakj = r for some value of r. Clearly, r = sa for some s.
Thus, we have ikj = s, or i = k−js. Thus, for each value of s, there will be
m terms in the double sum that equal sa. This means that the double sum
equals

m

n−1∑
i=0

ωi = m

(
ωn − 1

ω − 1

)
= 0

as required. Therefore, these two group representations are isomorphic.
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Now that we know that these representations are isomorphic, we can con-
vert between the two representations at will. Any group-theoretic statement
that is true with the adjacency representation is also true with the natu-
ral representation. In particular, corresponding matrices will have the same
characteristic polynomial. This fact will be quite important in the proof of
the main theorem, in the next section.

4 Characteristic Polynomials of Semidirect
Products of Cyclic Groups

The following is our main result about characteristic polynomials of semidi-
rect products of cyclic groups. It can be applied in numerous specific cases to
yield information about the spectra of Cayley graphs of semidirect products
of cyclic groups. Sometimes, it can even lead to explicit formulas for the
eigenvalues.

Theorem 4.1. The characteristic polynomial of the semidirect product of
two cyclic groups is given by the following:

χ (A (C (Z/nok Z/m, S))) =
n−1∏
i=0

χ

 ∑
xayb∈S

Ωia (Cm)b


Proof. Let G = Z/nok Z/m. By Theorem 3.2,

χ (A (C (G,S))) = χ

(∑
s∈S

A (C (G, {s}))

)
= χ

(∑
s∈S

As

)
.

Since s ∈ G, it can be written uniquely as xayb for some 0 ≤ a < n and
some 0 ≤ b < m. Thus, the formula becomes

χ

 ∑
xayb∈S

Axayb

 = χ

 ∑
xayb∈S

XaY b

 ,

by Theorem 3.5. Then, by Definition 3.4 (and Theorem 3.5), it becomes

n−1∏
i=0

χ

 ∑
xayb∈S

(Ωi)
a (Cm)b

 =
n−1∏
i=0

χ

 ∑
xayb∈S

Ωia (Cm)b


11



by Proposition 3.2, as required.

The rest of this section and all of the next section will show a variety of
ways in which this formula can be applied. The easiest examples allow for
direct computation of eigenvalues, whereas other applications only allow for
computation of a characteristic polynomial.

4.1 Spectra of Finite Abelian Groups

An immediate application of Theorem 4.1 is to the calculation of spectra of
Cayley graphs of finite abelian groups. For example, the following theorem
about the spectra of cyclic groups was proved at the 2006 REU project at
Canisius [4].

Proposition 4.1. The eigenvalues of C (Z/n, S) are given by{
λ | λ =

∑
s∈S

ωxs, x ∈ Z, 1 ≤ x ≤ n

}
.

Proof. Clearly, Z/n ∼= Z/n×Z/1 ∼= Z/no1Z/1. That means that Ωh = I1ω
h.

Thus, by Theorem 4.1,

χ (A (C (Z/n, S))) =
n−1∏
i=0

χ

(∑
xa∈S

Ωia

)
=

n−1∏
i=0

χ

(∑
xa∈S

I1ω
ia

)

=
n−1∏
i=0

χ

(
I1
∑
xa∈S

ωia

)
=

n−1∏
i=0

(
λ−

∑
xa∈S

ωia

)

which is clearly the required formula.

A much more general result can also be proved regarding spectra of finite
abelian groups.

Theorem 4.2. Let x1, . . . , xh be generators for cyclic groups Z/n1, . . . ,Z/nh.
The eigenvalues of the Cayley graph of this product group with generators S
has eigenvalues {

λ | λ =
∑
s∈S

h∏
i=1

ωjiaini
, 0 ≤ jb < nb

}
,
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where each s in the sum is written as

s =
h∏
b=1

xaii

for some sequence of values ai.

Proof. According to [5], a representation with matrices of dimension

h∏
i=1

nh ×
h∏
i=1

nh

can be built as a tensor product from the natural representations of the
cyclic groups, and it will clearly be isomorphic to the analog built as a tensor
product of the adjacency representations. All of the matrices in this represen-
tation will be diagonal, so the eigenvalues of their linear combinations will be
the linear combinations of their entries. These are precisely the eigenvalues
specified by the formula.

Corollary 4.1. Let x be a generator for Z/n, and let y be a generator for
Z/m. The eigenvalues of C (Z/n× Z/m, {x, y}) are{

λ | λ = ωin + ωjm, 0 ≤ i < n, 0 ≤ j < m
}
.

Proof. Apply Theorem 4.2 with h = 2, n1 = n, n2 = m, and S = {x, y}.

4.2 Examples of Spectra of Semidirect Products of Cyclic
Groups

In addition to confirming known results about abelian groups, Theorem 4.1
can also be used to investigate spectra of non-abelian semidirect products.
The least complicated such groups are dihedral groups.

Definition 4.1. The dihedral group of order 2n, denoted D2n, is
Z/no−1 Z/2.

Theorem 4.1 leads to a general form for the characteristic polynomials of
Cayley graphs of dihedral groups with arbitrary generators.
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Theorem 4.3.
χ (A (C (D2n, S))) =

n−1∏
i=0

λ2 − λ
∑
xa∈S

(
ωia + ω−ia

)
+

∑
xa∈S

∑
xb∈S

ωiaω−ib −
∑
xay∈S

∑
xby∈S

ωiaω−ib


Proof. Applying Theorem 4.1 yields

χ (A (C (D2n, S))) =
n−1∏
i=0

χ

(∑
xa∈S

Ωi +
∑
xay∈S

C2

)
.

∑
xa∈S

Ωi +
∑
xay∈S

C2 =


∑
xa∈S

ωia
∑
xay∈S

ωia∑
xay∈S

ω−ia
∑
xa∈S

ω−ia

 .
This is a 2× 2 matrix with complex entries. It has characteristic polynomial(

λ−
∑
xa∈S

ωia

)(
λ−

∑
xa∈S

ω−ia

)
−

(∑
xay∈S

ωia

)(∑
xay∈S

ω−ia

)

= λ2 − λ
∑
xa∈S

(
ωia + ω−ia

)
+

∑
xa∈S

∑
xb∈S

ωiaω−ib −
∑
xay∈S

∑
xby∈S

ωiaω−ib

 .

Substituting this into the original formula yields

n−1∏
i=0

λ2 − λ
∑
xa∈S

(
ωia + ω−ia

)
+

∑
xa∈S

∑
xb∈S

ωiaω−ib −
∑
xay∈S

∑
xby∈S

ωiaω−ib


as required.

An application of Theorem 4.3 leads to the following theorem, which was
shown at the 2006 REU at Canisius [1].

Corollary 4.2. χ (A (C (D2n, {x, y}))) = λn · χ (A (C (Z/n, {±1})))
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Proof. Applying Theorem 4.3 yields

χ (A (C (D2n, {x, y}))) =
n−1∏
i=0

(
λ2 − λ

(
ωi + ω−i

)
+
(
ωiω−i − ωiω−i

))
=

n−1∏
i=0

λ
(
λ−

(
ωi + ω−i

))
= λn

n−1∏
i=0

(
λ−

(
ωi + ω−i

))
= λnχ (A (C (Z/n, {±1})))

by Proposition 4.1, as required.

Another relatively well-behaved type of semidirect product is that formed
between two cyclic groups of odd prime order. Theorem 4.4 is another ap-
plication of Theorem 4.1.

Theorem 4.4. Let p1 and p2 be odd primes such that p1 divides p2 − 1. (It
is well known that this condition is necessary and sufficient for a nontrivial
semidirect product to exist [2].) Let k give a nontrivial semidirect product.
Then,

χ (A (C (Z/p2 ok Z/p1, {x, y}))) =

p2−1∏
i=0

(
p1−1∏
j=0

(
λ− ωikj

)
− 1

)
= ((λ− 1)p1 + 1) q (λ)p1

for some polynomial q (λ).

Theorem 4.4 will require two lemmas to be proven. The first lemma gives
the beginnings of a form for the characteristic polynomials of these groups.
This lemma will be presented in a more general form than required to prove
the theorem, as it holds for any semidirect product Z/nok Z/m.

For the remainder of this paper, given m, n, and k satifying mk ≡
1 (mod n), let Zi = Ωi + Cm, where Ωi and Cm are both m×m.

Lemma 4.1. For a semidirect product Z/nok Z/m, for every value of h,

χ (Zh) =
m−1∏
j=0

(
λ− ωhkj

)
− 1.
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Proof. Of course χ (Zh) = det (λI − Zh). This matrix has binomials on the
main diagonal, ones on the superdiagonal and in the lower left corner, and
zeroes elsewhere. By Leibniz’s formula,

detA =
∑
σ∈Smn

sgn (σ)
mn∏
i=1

ai,σ(i).

In λI−Zh, choosing a nonzero element in the first row amounts to choosing a
nonzero element in either the last row (if the binomial on the main diagonal
is chosen) or in the second row (if the -1 on the superdiagonal is chosen). It
is clear that this process propagates so that the only permutations choosing
only nonzero elements are the one that selects the diagonal entries (the iden-
tity permutation, which is even) and the one that selects the superdiagonal
elements and the lower left element, which is a cycle of length m, and, hence,
has sign (−1)m+1. Since this term without the sign is the product of -1 m
times, it is true that

χ (Zh) = det (λI − Zh) =
m−1∏
j=0

(
λ− ωhkj

)
− 1

as required.

Let p2 be an odd prime. In order to state the next lemma, we need the
following.

Definition 4.2. Let a, b ∈ Z. Let ∼ be the relation on Z/p×2 given by a ∼ b
if a = kdb for some d ∈ Z.

Proposition 4.2. ∼ is an equivalence relation.

Proof. I will show that ∼ satisfies the axioms of an equivalence relation.
Reflexivity: a = ak0, so a ∼ a.
Symmetry: Let a ∼ b. This means that there exists an integer d such that
akd = b. Note that bk−d = a, where k−d is defined as the inverse of k modulo
p2 raised to the d power. This means that b ∼ a.
Transitivity: Let a ∼ b and b ∼ c. This means that there exist integers d1

and d2 such that akd1 = b and bkd2 = c. Note that akd1kd2 = akd1+d2 = c.
This means that a ∼ c.
Therefore, ∼ is an equivalence relation.
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The second lemma establishes equality of characteristic polynomials of
blocks within the partitions specified by Definition 4.2.

Lemma 4.2. When working with a semidirect product of cyclic groups of
odd prime order (so n = p2 and m = p1, if a ∼ b, then χ (Za) = χ (Zb)).

Proof. First, I will show that all of the equivalence classes given by∼ have the
same size. Consider an arbitrary element h ∈ Z/p×2 . The partition of Z/p×2
containing h is

{
m | m = hkd for some d

}
. Recall that kp1 ≡ 1 (mod p2).

Since p1 is prime, no smaller power of k can be one. Thus, the size of the
partition containing h must be p1. Since h was arbitrary, all partitions must
have size p1 (and, hence, there are p2−1

p1
of them).

Each matrix Z contains p1 roots of unity on the diagonal. The powers
on ωbp2 are clearly one partition of Z/p×2 . Thus, if a ∼ b, the element in
the upper left corner in Zb will appear somewhere on the diagonal of Za.
Since this element’s exponent is in both partitions, they must be the same
partition. Thus, the diagonal elements are the same; they are just in a differ-
ent order. This results in the same characteristic polynomial, as polynomial
multiplication over Z [ωp2 ] is commutative.

Now that all of the necessary machinery is in place, we can prove Theorem
4.4.

Proof. In this proof, the Z matrices are determined as they were in Lemma
4.2. By Theorem 4.1,

χ (A (C (Z/p2 ok Z/p1, {x, y}))) =
n−1∏
i=0

χ (Zi) = χ (Z0)
n−1∏
i=1

χ (Zi) .

By Lemma 4.1, χ (Z0) = ((λ− 1)p1 + 1), as needed. By Lemmas 4.2 and 4.2,

n−1∏
i=1

χ (Zi)

is a perfect pth1 power, as there are equivalences of characteristic polynomials
over partitions of size p1. This concludes the proof.

Note that, in general, the entries in the matrices Zn are complex numbers,
and, hence, their characteristic polynomials have complex coefficients. The-
orem 4.4 implies that the product of all of these characteristic polynomials
is a polynomial with integer coefficients.
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5 Additional Results
Many of the calculations in this paper work in a cyclotomic field extension
of the rational numbers. When performing calculations in this field, an iden-
tity arises that provides a connection between various mathematical entities.
This result provides a connection between roots of unity, matrices with inte-
ger coefficients, and determinants of block matrices. In general, finding the
determinant of a block matrix is difficult, but in this specific case we get a
simpler answer.

Let M = Ax + Ay, the m×m block matrices described in Theorem 3.3.

Theorem 5.1.

χ (M) =
n−1∏
i=0

(
m−1∏
j=0

(
λ− ωikj

)
− 1

)
= det

(
m−1∏
j=0

(
λI − (Cn)k

j
)
− I

)

The proof of Theorem 5.1 will require the following lemma.

Lemma 5.1.

χ (M) = det

(
m−1∏
j=0

(
λI − (Cn)k

j
)
− I

)
Proof. The formula χ (M) = det (λI −M) is derived by solving the equation
Mv = λv so that the values of λ that are roots of the characteristic polyno-
mial are the eigenvalues of M . Since M is a block matrix, I will solve for the
eigenvalues in a different way.

Like before, start withMv = λv. Now, sinceM is anm×m block matrix,
express v as an m× 1 block matrix. Let the ith block in v be denoted vi. For

example, if m = 3, then v =

 v1

v2

v3

. This yields the following system of m

equations: {
(Cn)k

j

vj + v(jmodm)+1 = λvj

for j ∈ (Z/ (m+ 1)− {0}). These equations can be rewritten into the form{ (
λI − (Cn)k

j
)
vj = v(jmodm)+1

for j ∈ (Z/ (m+ 1)− {0}). Starting from any one of these equations, sub-
stitutions can be done in a cyclic manner until the same vector appears on
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both sides of a single equation. Keeping in mind that all matrices of the form
λI − (Cn)k

j

commute with each other, the following equation is the result of
such a substitution into the last equation:(

m−1∏
j=0

(
λI − (Cn)k

j
))

v1 = v1.

Rearranging yields (
m−1∏
j=0

(
λI − (Cn)k

j
)
− I

)
v1 = 0.

This yields the desired result that the eigenvalues ofM are given by the roots
of

det

(
m−1∏
j=0

(
λI − (Cn)k

j
)
− I

)
so this must be an expression for χ (M).

Now, Theorem 5.1 can be proved.

Proof. The left side, by Lemma 4.1, equals χ (M). The right side, by Lemma
5.1, equals χ (M).

5.1 Future Directions

It would be useful to find a statement analogous to Theorem 4.1 for semidirect
products of abelian groups in general, as opposed to only for semidirect
products of cyclic groups. Such a tool could be used to analyze groups such
as A4 = (Z/2× Z/2) o Z/3. Perhaps an even more general result could be
found that would yield information about spectra for any semidirect product,
or, more optimistically, for any finite group.
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