Spectra of Semidirect Products of Cyclic Groups

Nathan Fox

University of Minnesota-Twin Cities Canisius College REU

July 28, 2010

Nathan Fox Spectra of Semidirect Products of Cyclic Groups

The **Characteristic Polynomial** of a graph X, denoted $\chi(X)$, is the characteristic polynomial of A(X), the adjacency matrix of X.

Definition

The **Spectrum** of a graph X is the set of its **Eigenvalues**, which are the roots of $\chi(X)$.

Definition

Let C(G, S) denote the Cayley graph of a group G using the set $S \subseteq G$ to generate the graph. (Precisely speaking, S is not a set, as it could contain duplicates.) The **Spectrum** of G given a set S is the spectrum of C(G, S).

A **Graph Morphism** is a map φ from a graph X to a graph Y such that each vertex of X maps to a vertex of Y, and a (directed) edge (v_1, v_2) in X maps to the edge $(\varphi(v_1), \varphi(v_2))$ in Y.

Definition

A **Graph Covering** is a surjective graph morphism $\varphi : X \longrightarrow Y$ which gives for each vertex v_1 in X a bijection between edges leaving v_1 and edges leaving $\varphi(v_1)$ and a bijection between edges entering v_1 and edges entering $\varphi(v_1)$. We say that the graph X **Covers** the graph Y if there exists a covering map from X to Y.

Theorem

If a graph X covers a graph Y, then $\chi(Y)$ divides $\chi(X)$.

Proof involves showing that the adjacency matrix of X can be written in the form $\begin{bmatrix} B & C \\ 0 & A(Y) \end{bmatrix}$ (where A(Y) is the adjacency matrix of Y).

Proposition

Given a group homomorphism φ from a group G onto a group K (or, equivalently, given $H \lhd G$ such that G/H = K), C(G, S) covers $C(K, \varphi(S))$.

Given two groups G and H and a group homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(G)$, the **Semidirect Product** of G and H with respect to φ , denoted $G \rtimes_{\varphi} H$ (or, simply, $G \rtimes H$) is a new group with set $G \times H$ and multiplication operation $(g_1, h_1)(g_2, h_2) = (g_1\varphi(h_1)g_2, h_1h_2).$

Proposition

Given cyclic groups \mathbb{Z}/m and \mathbb{Z}/n , a semidirect product $\mathbb{Z}/m \rtimes \mathbb{Z}/n$ between them corresponds to a choice of integer k such that $k^n \equiv 1 \pmod{m}$. The semidirect product group is given by $\mathbb{Z}/m \rtimes \mathbb{Z}/n = \langle x, y \mid x^m = e, y^n = e, yxy^{-1} = x^k \rangle$.

- Semidirect products provide a simple way of building non-abelian groups.
- Little is known in general about the spectra of non-abelian groups.
- Techniques used here in analyzing the spectra:
 - Using graph coverings to find factors of the characteristic polynomials of the Cayley graphs.
 - Using block matrices to simplify computation.
 - Finding connections with roots of unity.

For all cyclic groups, there is at least one automorphism of order 2. One of these automorphisms corresponds to a choice of k = -1, and is realized by inverting all of the elements of the group.

Definition

Given an integer *n*, the **Dihedral Group of Order 2n**, denoted D_{2n} , is given by $\langle x, y \mid x^n = e, y^2 = e, yxy^{-1} = x^{-1} \rangle = \mathbb{Z}/n \rtimes \mathbb{Z}/2$.

Theorem (Taylor Coon)

$$\chi(C(D_{2n}, \{x, y\})) = \lambda^n \chi(C(\mathbb{Z}/n, \{\pm 1\})).$$

Taylor's proof uses the Figure Equation, which is a formula for the characteristic polynomial of a graph that does not involve the adjacency matrix. I found an alternative proof using the adjacency matrix.

Figure: $C(D_{10}, \{x, y\})$

- The λⁿ factor in the characteristic polynomial comes from the fact that every row in the adjacency matrix for a dihedral group repeats.
- The other factor in the characteristic polynomial comes from a covering of \mathbb{Z}/n given by the map $\varphi : D_{2n} \longrightarrow \mathbb{Z}/n$, where $\varphi (x^a y^b) = x^{a+b}$ for $0 \le a < n$ and $0 \le b < 2$.
- But, φ is NOT a group homomorphism. However, there is another covering given by the group homomorphism ψ : D_{2n} → Z/2, where ψ (x) = e and ψ (y) = y.

For odd primes p_1 and p_2 , a nontrivial semidirect product $\mathbb{Z}/p_2 \rtimes \mathbb{Z}/p_1$ will exist if and only if p_1 divides $p_2 - 1$.

Definition

Given odd primes p_1 and p_2 with p_1 dividing $p_2 - 1$, their semidirect product, which will be denoted $H_{p_1p_2}$, is given by $\langle x, y \mid x^{p_2} = e, y^{p_1} = e, yxy^{-1} = x^k \rangle = \mathbb{Z}/p_2 \rtimes \mathbb{Z}/p_1$ for some k such that $k^{p_1} \equiv 1 \pmod{p_2}$.

Proposition

For any two values of $k \neq 1$ with $k^{p_1} \equiv 1 \pmod{p_2}$, the resulting semidirect products are isomorphic.

(Proof involves showing that changing the value of k in this way is an automorphism of the group.)

Figure: $C(H_{21}, \{x, y\})$

- Based on their definitions, these groups appear similar in structure to the dihedral groups.
- Here, however, there appears to be no covering of a cyclic group that does not come from a group homomorphism.
- The expected covering of Z/p₁ sending x to the identity and y to y is present, and this behavior is well-understood.
- Therefore, I was more concerned with investigating the rest of the characteristic polynomial of C (H_{p1p2}, {x, y}).

Main Theorem

Let ω be a primitive p_2^{th} root of unity, and W is a specific matrix with characteristic polynomial the p_2^{th} cyclotomic polynomial. $\chi(C(H_{p_1p_2}, \{x, y\})) = ((1 - \lambda)^{p_1} + 1) s(\lambda)$, where

$$s(\lambda) = \prod_{n=1}^{p_2-1} \left(\prod_{j=0}^{p_1-1} \left(\lambda - \omega^{nk^j} \right) - 1 \right) = \det \left(\prod_{j=0}^{p_1-1} \left(\lambda I - W^{k^j} \right) - I \right)$$

Example

If
$$p_2 = 7$$
, $W = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$

Corollary

$$s(\lambda) = r(\lambda)^{p_1}$$
 for some integer polynomial $r(\lambda)$.

Nathan Fox

Spectra of Semidirect Products of Cyclic Groups

Figure: Proof Flowchart

Example

Let A be the adjacency matrix. If $p_1 = 3$ and $p_2 = 7$, then (for												
			Γ	С		Ι	0		ΓW	1	0	
k = 2) A =			=	0	C^2		1	and $M =$	0	W^2	/ , whe	, where
				Ι		0	C^4		1	0	W^4	
		1 0	0 1	0 0	0	0	0					
<i>C</i> =	0	0 0	0 0	1 0	0 1	0 0	0					
-	0	0	0	0	0	1	0					
		0	0	0	0	0	0					

Example

$$\chi (C (H_{39}, \{x, y\})) = ((1 - \lambda)^3 + 1) (\lambda^{12} + \lambda^{11} + \lambda^{10} - 3\lambda^9 - 2\lambda^8 + 5\lambda^6 + 7\lambda^5 - 3\lambda^4 - 4\lambda^3 + 8\lambda + 16)^3$$

Given integers *m*, *n*, the **Generalized Dihedral Group of Order 2mn with cycle 2m**, denoted $\Delta_{m,n}$, is given by $\langle x, y | x^n = e, y^{2m} = e, yxy^{-1} = x^{-1} \rangle = \mathbb{Z}/n \rtimes \mathbb{Z}/2m.$

Figure: $C(\Delta_{2,7}, \{x, y\})$

Preliminary Results:

- There is a covering from $\Delta_{m,n}$ to $\Delta_{\frac{m}{s},\frac{n}{t}}$ for every *s* dividing *m* and *t* dividing *n*.
- For each positive integer *i*, there is a polynomial $p_i(\lambda)$ such that

$$\chi(C(\Delta_{m,n}, \{x, y\})) = \prod_{i|n} p_i(\lambda).$$

• For each positive integer *i*, there is a polynomial $q_i(\lambda)$ such that

$$\chi(C(\Delta_{m,n}, \{x, y\})) = \prod_{i|m} q_i(\lambda).$$

• deg $(p_n) = 2m\phi(n)$ and deg $(q_m) = 2n\phi(m)$, where ϕ is Euler's totient function.

Generalized Semidirect Products of Odd Prime Cyclic Groups

Theorem

For all positive integers b, there exists a positive integer a such that $(p_2a + k)^{p_1} \equiv 1 \pmod{bp_2}$, where $k^{p_1} \equiv 1 \pmod{p_2}$.

Definition

Given odd primes p_1 and p_2 with p_1 dividing $p_2 - 1$ and given positive integers m and n, their generalized semidirect product, which will be denoted η_{m,n,p_1,p_2} , is given by $\langle x, y \mid x^{mp_2} = e, y^{np_1} = e, yxy^{-1} = x^{\kappa} \rangle = \mathbb{Z}/mp_2 \rtimes \mathbb{Z}/np_1$, where $\kappa = p_2a + k$ is given by the previous theorem. Preliminary Results:

- There is a covering from η_{m,n,p1,p2} to η_{m/s}, n/t,p1,p2</sub> for every s dividing m and t dividing n.
- For each pair of positive integers i, j, there is a polynomial $q_{i,j}(\lambda)$ such that

$$\chi\left(C\left(\eta_{m,n,p_{1},p_{2}},\{x,y\}\right)\right)=\prod_{i\mid n}\prod_{j\mid m}q_{i,j}\left(\lambda\right).$$

• deg
$$(q_{m,n}) = p_1 p_2 \phi(m) \phi(n)$$
.