Spectra of Semidirect Products of Cyclic Groups

Nathan Fox
University of Minnesota-Twin Cities
Canisius College REU

July 28, 2010

Spectrum of a Graph

Definition

The Characteristic Polynomial of a graph X, denoted $\chi(X)$, is the characteristic polynomial of $A(X)$, the adjacency matrix of X.

Definition

The Spectrum of a graph X is the set of its Eigenvalues, which are the roots of $\chi(X)$.

Definition

Let $C(G, S)$ denote the Cayley graph of a group G using the set $S \subseteq G$ to generate the graph. (Precisely speaking, S is not a set, as it could contain duplicates.) The Spectrum of G given a set S is the spectrum of $C(G, S)$.

Graph Covering

Definition

A Graph Morphism is a map φ from a graph X to a graph Y such that each vertex of X maps to a vertex of Y, and a (directed) edge $\left(v_{1}, v_{2}\right)$ in X maps to the edge $\left(\varphi\left(v_{1}\right), \varphi\left(v_{2}\right)\right)$ in Y.

Definition

A Graph Covering is a surjective graph morphism $\varphi: X \longrightarrow Y$ which gives for each vertex v_{1} in X a bijection between edges leaving v_{1} and edges leaving $\varphi\left(v_{1}\right)$ and a bijection between edges entering v_{1} and edges entering $\varphi\left(v_{1}\right)$. We say that the graph X Covers the graph Y if there exists a covering map from X to Y.

Graph Covering: Properties

Theorem

If a graph X covers a graph Y, then $\chi(Y)$ divides $\chi(X)$.
Proof involves showing that the adjacency matrix of X can be written in the form $\left[\begin{array}{c|c}B & C \\ \hline 0 & A(Y)\end{array}\right]$ (where $A(Y)$ is the adjacency matrix of Y).

Proposition

Given a group homomorphism φ from a group G onto a group K (or, equivalently, given $H \triangleleft G$ such that $G / H=K), C(G, S)$ covers $C(K, \varphi(S))$.

Semidirect Product

Definition

Given two groups G and H and a group homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(G)$, the Semidirect Product of G and H with respect to φ, denoted $G \rtimes_{\varphi} H$ (or, simply, $G \rtimes H$) is a new group with set $G \times H$ and multiplication operation $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} \varphi\left(h_{1}\right) g_{2}, h_{1} h_{2}\right)$.

Proposition

Given cyclic groups \mathbb{Z} / m and \mathbb{Z} / n, a semidirect product $\mathbb{Z} / m \rtimes \mathbb{Z} / n$ between them corresponds to a choice of integer k such that $k^{n} \equiv 1(\bmod m)$. The semidirect product group is given by $\mathbb{Z} / m \rtimes \mathbb{Z} / n=\left\langle x, y \mid x^{m}=e, y^{n}=e, y x y^{-1}=x^{k}\right\rangle$.

Additional Introductory Information

- Semidirect products provide a simple way of building non-abelian groups.
- Little is known in general about the spectra of non-abelian groups.
- Techniques used here in analyzing the spectra:
- Using graph coverings to find factors of the characteristic polynomials of the Cayley graphs.
- Using block matrices to simplify computation.
- Finding connections with roots of unity.

Dihedral Groups

For all cyclic groups, there is at least one automorphism of order 2. One of these automorphisms corresponds to a choice of $k=-1$, and is realized by inverting all of the elements of the group.

Definition

Given an integer n, the Dihedral Group of Order 2n, denoted $D_{2 n}$, is given by $\left\langle x, y \mid x^{n}=e, y^{2}=e, y x y^{-1}=x^{-1}\right\rangle=\mathbb{Z} / n \rtimes \mathbb{Z} / 2$.

Theorem (Taylor Coon)

$\chi\left(C\left(D_{2 n},\{x, y\}\right)\right)=\lambda^{n} \chi(C(\mathbb{Z} / n,\{ \pm 1\}))$.
Taylor's proof uses the Figure Equation, which is a formula for the characteristic polynomial of a graph that does not involve the adjacency matrix. I found an alternative proof using the adjacency matrix.

Dihedral Groups

Figure: $C\left(D_{10},\{x, y\}\right)$

- The λ^{n} factor in the characteristic polynomial comes from the fact that every row in the adjacency matrix for a dihedral group repeats.
- The other factor in the characteristic polynomial comes from a covering of \mathbb{Z} / n given by the map $\varphi: D_{2 n} \longrightarrow \mathbb{Z} / n$, where $\varphi\left(x^{a} y^{b}\right)=x^{a+b}$ for $0 \leq a<n$ and $0 \leq b<2$.
- But, φ is NOT a group homomorphism. However, there is another covering given by the group homomorphism $\psi: D_{2 n} \longrightarrow \mathbb{Z} / 2$, where $\psi(x)=e$ and $\psi(y)=y$.

Semidirect Products of Cyclic Groups of Odd Prime Order

For odd primes p_{1} and p_{2}, a nontrivial semidirect product $\mathbb{Z} / p_{2} \rtimes \mathbb{Z} / p_{1}$ will exist if and only if p_{1} divides $p_{2}-1$.

Definition

Given odd primes p_{1} and p_{2} with p_{1} dividing $p_{2}-1$, their semidirect product, which will be denoted $H_{p_{1} p_{2}}$, is given by $\left\langle x, y \mid x^{p_{2}}=e, y^{p_{1}}=e, y x y^{-1}=x^{k}\right\rangle=\mathbb{Z} / p_{2} \rtimes \mathbb{Z} / p_{1}$ for some k such that $k^{p_{1}} \equiv 1\left(\bmod p_{2}\right)$.

Proposition

For any two values of $k \neq 1$ with $k^{p_{1}} \equiv 1\left(\bmod p_{2}\right)$, the resulting semidirect products are isomorphic.
(Proof involves showing that changing the value of k in this way is an automorphism of the group.)

Semidirect Products of Cyclic Groups of Odd Prime Order

Figure: $C\left(H_{21},\{x, y\}\right)$

- Based on their definitions, these groups appear similar in structure to the dihedral groups.
- Here, however, there appears to be no covering of a cyclic group that does not come from a group homomorphism.
- The expected covering of \mathbb{Z} / p_{1} sending x to the identity and y to y is present, and this behavior is well-understood.
- Therefore, I was more concerned with investigating the rest of the characteristic polynomial of $C\left(H_{p_{1} p_{2}},\{x, y\}\right)$.

Semidirect Products of Cyclic Groups of Odd Prime Order

Main Theorem

Let ω be a primitive $p_{2}^{\text {th }}$ root of unity, and W is a specific matrix with characteristic polynomial the $p_{2}^{\text {th }}$ cyclotomic polynomial.
$\chi\left(C\left(H_{p_{1} p_{2}},\{x, y\}\right)\right)=\left((1-\lambda)^{p_{1}}+1\right) s(\lambda)$, where
$s(\lambda)=\prod_{n=1}^{p_{2}-1}\left(\prod_{j=0}^{p_{1}-1}\left(\lambda-\omega^{n k^{j}}\right)-1\right)=\operatorname{det}\left(\prod_{j=0}^{p_{1}-1}\left(\lambda I-W^{k^{j}}\right)-I\right)$

Example

$$
\text { If } p_{2}=7, W=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

Corollary
$s(\lambda)=r(\lambda)^{p_{1}}$ for some integer polynomial $r(\lambda)$.

Semidirect Products of Cyclic Groups of Odd Prime Order

Figure: Proof Flowchart

Semidirect Products of Cyclic Groups of Odd Prime Order

Example

Let A be the adjacency matrix. If $p_{1}=3$ and $p_{2}=7$, then (for
$k=2) A=\left[\begin{array}{c|c|c}C & I & 0 \\ \hline 0 & C^{2} & l \\ \hline l & 0 & C^{4}\end{array}\right]$ and $M=\left[\begin{array}{c|c|c}W & l & 0 \\ \hline 0 & W^{2} & I \\ \hline l & 0 & W^{4}\end{array}\right]$, where
$C=\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right]$

Example

$\chi\left(C\left(H_{39},\{x, y\}\right)\right)=$
$\left((1-\lambda)^{3}+1\right)\left(\lambda^{12}+\lambda^{11}+\lambda^{10}-3 \lambda^{9}-2 \lambda^{8}+5 \lambda^{6}+7 \lambda^{5}-3 \lambda^{4}-4 \lambda^{3}+8 \lambda+16\right)^{3}$

Generalized Dihedral Groups

Definition

Given integers m, n, the Generalized Dihedral Group of Order $\mathbf{2 m n}$ with cycle $\mathbf{2 m}$, denoted $\Delta_{m, n}$, is given by

$$
\left\langle x, y \mid x^{n}=e, y^{2 m}=e, y x y^{-1}=x^{-1}\right\rangle=\mathbb{Z} / n \rtimes \mathbb{Z} / 2 m
$$

Figure: $C\left(\Delta_{2,7},\{x, y\}\right)$

Generalized Dihedral Groups

Preliminary Results:

- There is a covering from $\Delta_{m, n}$ to $\Delta_{\frac{m}{s}, \frac{n}{t}}$ for every s dividing m and t dividing n.
- For each positive integer i, there is a polynomial $p_{i}(\lambda)$ such that

$$
\chi\left(C\left(\Delta_{m, n},\{x, y\}\right)\right)=\prod_{i \mid n} p_{i}(\lambda) .
$$

- For each positive integer i, there is a polynomial $q_{i}(\lambda)$ such that

$$
\chi\left(C\left(\Delta_{m, n},\{x, y\}\right)\right)=\prod_{i \mid m} q_{i}(\lambda) .
$$

- $\operatorname{deg}\left(p_{n}\right)=2 m \phi(n)$ and $\operatorname{deg}\left(q_{m}\right)=2 n \phi(m)$, where ϕ is Euler's totient function.

Generalized Semidirect Products of Odd Prime Cyclic Groups

Theorem

For all positive integers b, there exists a positive integer a such that $\left(p_{2} a+k\right)^{p_{1}} \equiv 1\left(\bmod b p_{2}\right)$, where $k^{p_{1}} \equiv 1\left(\bmod p_{2}\right)$.

Definition

Given odd primes p_{1} and p_{2} with p_{1} dividing $p_{2}-1$ and given positive integers m and n, their generalized semidirect product, which will be denoted $\eta_{m, n, p_{1}, p_{2}}$, is given by
$\left\langle x, y \mid x^{m p_{2}}=e, y^{n p_{1}}=e, y x y^{-1}=x^{\kappa}\right\rangle=\mathbb{Z} / m p_{2} \rtimes \mathbb{Z} / n p_{1}$, where $\kappa=p_{2} a+k$ is given by the previous theorem.

Generalized Semidirect Products of Odd Prime Cyclic Groups

Preliminary Results:

- There is a covering from $\eta_{m, n, p_{1}, p_{2}}$ to $\eta_{\frac{m}{s}, \frac{n}{t}, p_{1}, p_{2}}$ for every s dividing m and t dividing n.
- For each pair of positive integers i, j, there is a polynomial $q_{i, j}(\lambda)$ such that

$$
\chi\left(C\left(\eta_{m, n, p_{1}, p_{2}},\{x, y\}\right)\right)=\prod_{i \mid n} \prod_{j \mid m} q_{i, j}(\lambda) .
$$

- $\operatorname{deg}\left(q_{m, n}\right)=p_{1} p_{2} \phi(m) \phi(n)$.

