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Spectrum of a Graph

Definition

The Characteristic Polynomial of a graph X , denoted χ (X ), is
the characteristic polynomial of A (X ), the adjacency matrix of X .

Definition

The Spectrum of a graph X is the set of its Eigenvalues, which
are the roots of χ (X ).

Definition

Let C (G ,S) denote the Cayley graph of a group G using the set
S ⊆ G to generate the graph. (Precisely speaking, S is not a set,
as it could contain duplicates.) The Spectrum of G given a set S

is the spectrum of C (G ,S).
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Graph Covering

Definition

A Graph Morphism is a map ϕ from a graph X to a graph Y

such that each vertex of X maps to a vertex of Y , and a (directed)
edge (v1, v2) in X maps to the edge (ϕ (v1) , ϕ (v2)) in Y .

Definition

A Graph Covering is a surjective graph morphism ϕ : X −→ Y

which gives for each vertex v1 in X a bijection between edges
leaving v1 and edges leaving ϕ (v1) and a bijection between edges
entering v1 and edges entering ϕ (v1). We say that the graph X

Covers the graph Y if there exists a covering map from X to Y .
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Graph Covering: Properties

Theorem

If a graph X covers a graph Y , then χ (Y ) divides χ (X ).

Proof involves showing that the adjacency matrix of X can be

written in the form

�
B C

0 A (Y )

�
(where A (Y ) is the adjacency

matrix of Y ).

Proposition

Given a group homomorphism ϕ from a group G onto a group K

(or, equivalently, given H � G such that G/H = K ), C (G ,S)
covers C (K , ϕ (S)).
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Semidirect Product

Definition

Given two groups G and H and a group homomorphism
ϕ : H −→ Aut (G ), the Semidirect Product of G and H with
respect to ϕ, denoted G �ϕ H (or, simply, G � H) is a new group
with set G × H and multiplication operation
(g1, h1) (g2, h2) = (g1ϕ (h1) g2, h1h2).

Proposition

Given cyclic groups Z/m and Z/n, a semidirect product
Z/m � Z/n between them corresponds to a choice of integer k

such that k
n ≡ 1 (mod m). The semidirect product group is given

by Z/m � Z/n =
�
x , y | x

m = e, yn = e, yxy−1 = x
k
�
.

Nathan Fox Spectra of Semidirect Products of Cyclic Groups



Additional Introductory Information

Semidirect products provide a simple way of building
non-abelian groups.

Little is known in general about the spectra of non-abelian
groups.

Techniques used here in analyzing the spectra:
Using graph coverings to find factors of the characteristic
polynomials of the Cayley graphs.
Using block matrices to simplify computation.
Finding connections with roots of unity.
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Dihedral Groups

For all cyclic groups, there is at least one automorphism of order 2.
One of these automorphisms corresponds to a choice of k = −1,
and is realized by inverting all of the elements of the group.

Definition

Given an integer n, the Dihedral Group of Order 2n, denoted
D2n, is given by

�
x , y | x

n = e, y2 = e, yxy−1 = x
−1

�
= Z/n � Z/2.

Theorem (Taylor Coon)

χ (C (D2n, {x , y})) = λnχ (C (Z/n, {±1})).

Taylor’s proof uses the Figure Equation, which is a formula for the
characteristic polynomial of a graph that does not involve the
adjacency matrix. I found an alternative proof using the adjacency
matrix.
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Dihedral Groups

Figure: C (D10, {x , y})

The λn factor in the characteristic polynomial comes from the
fact that every row in the adjacency matrix for a dihedral
group repeats.

The other factor in the characteristic polynomial comes from
a covering of Z/n given by the map ϕ : D2n −→ Z/n, where
ϕ

�
x

a
y

b
�

= x
a+b for 0 ≤ a < n and 0 ≤ b < 2.

But, ϕ is NOT a group homomorphism. However, there is
another covering given by the group homomorphism
ψ : D2n −→ Z/2, where ψ (x) = e and ψ (y) = y .
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Semidirect Products of Cyclic Groups of Odd Prime Order

For odd primes p1 and p2, a nontrivial semidirect product
Z/p2 � Z/p1 will exist if and only if p1 divides p2 − 1.

Definition

Given odd primes p1 and p2 with p1 dividing p2 − 1, their
semidirect product, which will be denoted Hp1p2 , is given by�
x , y | x

p2 = e, yp1 = e, yxy−1 = x
k
�

= Z/p2 � Z/p1 for some k

such that k
p1 ≡ 1 (mod p2).

Proposition

For any two values of k �= 1 with k
p1 ≡ 1 (mod p2), the resulting

semidirect products are isomorphic.

(Proof involves showing that changing the value of k in this way is
an automorphism of the group.)
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Semidirect Products of Cyclic Groups of Odd Prime Order

Figure: C (H21, {x , y})

Based on their definitions, these groups appear similar in
structure to the dihedral groups.
Here, however, there appears to be no covering of a cyclic
group that does not come from a group homomorphism.
The expected covering of Z/p1 sending x to the identity and
y to y is present, and this behavior is well-understood.
Therefore, I was more concerned with investigating the rest of
the characteristic polynomial of C (Hp1p2 , {x , y}).
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Semidirect Products of Cyclic Groups of Odd Prime Order

Main Theorem

Let ω be a primitive p
th

2 root of unity, and W is a specific matrix
with characteristic polynomial the p

th

2 cyclotomic polynomial.
χ (C (Hp1p2 , {x , y})) = ((1− λ)p1 + 1) s (λ), where

s (λ) =
p2−1�

n=1




p1−1�

j=0

�
λ− ωnk

j
�
− 1



 = det




p1−1�

j=0

�
λI −W

k
j
�
− I





Example

If p2 = 7, W =

2

666664

0 0 0 0 0 −1
1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

3

777775

Corollary

s (λ) = r (λ)p1
for some integer polynomial r (λ).
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Semidirect Products of Cyclic Groups of Odd Prime Order

Figure: Proof Flowchart
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Semidirect Products of Cyclic Groups of Odd Prime Order

Example

Let A be the adjacency matrix. If p1 = 3 and p2 = 7, then (for

k = 2) A =




C I 0
0 C

2
I

I 0 C
4



 and M =




W I 0
0 W

2
I

I 0 W
4



, where

C =

2

66666664

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

3

77777775

Example
χ (C (H39, {x , y}))=“
(1− λ)3 + 1

” `
λ12 + λ11 + λ10 − 3λ9 − 2λ8 + 5λ6 + 7λ5 − 3λ4 − 4λ3 + 8λ + 16

´3
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Generalized Dihedral Groups

Definition

Given integers m, n, the Generalized Dihedral Group of Order

2mn with cycle 2m, denoted ∆m,n, is given by�
x , y | x

n = e, y2m = e, yxy−1 = x
−1

�
= Z/n � Z/2m.

Figure: C (∆2,7, {x , y})
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Generalized Dihedral Groups

Preliminary Results:

There is a covering from ∆m,n to ∆m

s
, n

t

for every s dividing m

and t dividing n.

For each positive integer i , there is a polynomial pi (λ) such
that

χ (C (∆m,n, {x , y})) =
�

i |n

pi (λ) .

For each positive integer i , there is a polynomial qi (λ) such
that

χ (C (∆m,n, {x , y})) =
�

i |m

qi (λ) .

deg (pn) = 2mφ (n) and deg (qm) = 2nφ (m), where φ is
Euler’s totient function.
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Generalized Semidirect Products of Odd Prime Cyclic

Groups

Theorem

For all positive integers b, there exists a positive integer a such

that (p2a + k)p1 ≡ 1 (mod bp2), where k
p1 ≡ 1 (mod p2).

Definition

Given odd primes p1 and p2 with p1 dividing p2 − 1 and given
positive integers m and n, their generalized semidirect product,
which will be denoted ηm,n,p1,p2 , is given by�
x , y | x

mp2 = e, ynp1 = e, yxy−1 = x
κ
�

= Z/mp2 � Z/np1, where
κ = p2a + k is given by the previous theorem.
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Generalized Semidirect Products of Odd Prime Cyclic

Groups

Preliminary Results:

There is a covering from ηm,n,p1,p2 to ηm

s
, n

t
,p1,p2

for every s

dividing m and t dividing n.

For each pair of positive integers i , j , there is a polynomial
qi ,j (λ) such that

χ (C (ηm,n,p1,p2 , {x , y})) =
�

i |n

�

j |m

qi ,j (λ) .

deg (qm,n) = p1p2φ (m) φ (n).
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