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Abstract

For certain graphs, we can associate a universal C*-algebra, which encodes the
information of the graph algebraically. In this paper we examine the relationships be-
tween products of graphs and their associated C*-algebras. We present the underlying
theory of associating a C*-algebra to a direct graph as well as to a higher rank graph.
We then provide several isomorphisms relating C*-algebras of product graphs to prod-
ucts of C*-algebras. Among these, we include a discussion of the direct sum, crossed
product, and tensor product of graph algebras.

1 Introduction

The notion of a C*-algebra associated to a graph has been a subject of great interest since
1980 when it was first introduced by Cuntz and Krieger. These algebras provide many
examples for operator algebraists and tend to show up in many different fields, including
non-abelian duality, non-commutative geometry, and in the study of C*-algebra structure.
The algebraic properties of a graph algebra are related to the combinatorial properties of
the underlying directed graph. Another idea of great interest in recent years is the notion
of higher rank graphs which comes from category theory.

Product graphs occur naturally in discrete mathematics and are of combinatorial interest.
They can often carry structure such as that of a metric space. Recent interest in product
graphs has largely focused on recognition algorithms to identify a graph as a product of
smaller graphs. Another point of interest is in the visualization of direct and semidirect
products of groups by the product graphs of their Cayley graphs. In this paper we explore
the link between these two ideas. That is, we provide a discussion of the structure of
C*-algebras associated to product graphs.

In section 1 we define some basic graph terminology along with various graph products as
well as higher rank graphs. We will find 2-graphs to be very useful in making the connection
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between some product graphs and their associated C*-algebras. We also provide a method
for constructing a higher rank graph from two directed graphs due to Alex Kumjian and
David Pask in [8].

In section 2 we present the methodology of associating a C*-algebra to a graph, together
with some examples. It is known that there is a universal C*-algebra of a directed graph
unique up to isomorphism [9]. Using a modified methodology taken from [8], [9], and [10]
we can also form a C*-algebra for a higher rank graph. We show that the higher rank
graph construction discussed in section 1 has the same uniqueness properties as the graph
algebras for directed graphs, by satisfying a known criterion of local convexity. We also
show that the graph algebra of a directed graph is isomorphic to the graph algebra of the
1-graph which is its path category, allowing us to discuss these two ideas equivalently.

In section 3 we present relationships between graph products and C*-algebra constructions.
First we provide a brief discussion of the direct sum of graph algebras as the graph algebra
of the union of graphs. We then present a result of Alex Kumjian and David Pask in [7]
which characterizes the crossed product of a graph algebra as the graph algebra of a factor
graph. Finally we use the notion of higher rank graphs to describe the tensor product
of graph algebras, and we present the graph algebra of the tensor product of graphs as a
sub-C*-algebra of this tensor product algebra.

We wish to thank our advisor Byung-Jay Kahng, Canisius College for hosting our REU,
and the National Science Foundation for its funding. We would also like to thank Iain
Raeburn for corresponding with us and for pointing us toward higher rank graphs which
led to most of our results.

2 Graphs

2.1 Directed Graphs

A graph G = (G0, G1, r, s) consists of a vertex set G0, together with an edge set G1, along
with two mappings r : G1 → G0 (range) such that r((x, y)) = y and s : G1 → G0 (source)
such that s((x, y)) = x.

Let u, v ∈ G0. We say that u is adjacent to v in G, denoted u ∼ v, if there is an element
e ∈ G1 such that s(e) = u and r(e) = v. A vertex v is called a source if r−1(v) = ∅. It
is common to illustrate these relationships by drawing the vertices of the graph as points,
with the adjacencies (or edges) of the graph indicated by arrows pointing from the source
vertex s(e) to the range vertex r(e). We then sometimes denote the edge e by the ordered
pair (r(e), s(e)). Given a finite graph G (i.e. G0 and G1 are both finite), we define the
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adjacency matrix AG to be the |G0| × |G0| matrix defined by

AG(v, w) = |{e ∈ G1 : r(e) = v, s(e) = w}|.

We then say that the graph G is row-finite if each row of AG has finite sum, that is each
vertex is the range of finitely many edges.

A graph is said to be undirected if the adjacency relation on the vertex set G0 is sym-
metric, that is u ∼ v ⇐⇒ v ∼ u for all u, v ∈ G0. Hence, in the case of an undirected
graph all arrows between points are double-headed arrows, and these are often suppressed
so that adjacencies are illustrated with line segments. All other graphs are said to be di-
rected graphs or digraphs. Note that the edges of directed graphs are frequently referred
to as arcs to distinguish them from undirected edges. Since it is more common to work
with undirected graphs, it is conventional to refer to undirected graphs just as graphs and
to refer to all other graphs as directed graphs. However, for the purposes of this paper all
graphs will be assumed to be directed.

A graph homomorphism from E to F is a map ϕ : E0 → F 0 that preserves the range
and source maps r, s. Then, if ϕ is also bijective we say it is a graph isomorphism,
and if further E = F we call ϕ a graph automorphism. It is clear that the set of all
automorphisms on E, denoted by Aut(E), is a group under composition.

We say a group G acts on a graph E if there exists a homomorphism ϕ : G → Aut(E).
Then the map · from G×E0 to E0 defined by g ·x = ϕ(g)(x) for all g ∈ G, x ∈ E0 is called
a group action of G on E.

A path of length n in a graph G is then a sequence of edges µ = µ1, µ2, . . . , µn such that
s(µi) = r(µi+1) for 1 ≤ i ≤ n − 1. We write |µ| for n, the length of the path. Vertices
are then said to be paths of length 0. Given a graph G, the set of all paths of length n is
denoted Gn, and we define G∗ to be ∪n≥0G

n. For n > 1 naturally extend the range and
source maps r, s to elements of G∗ with r(µ) := r(µ1) and s(µ) := s(µ|µ|). For v ∈ E0, we
define r(v) = v = s(v). Let µ, ν ∈ E∗. Then we say µ is composable with ν if r(ν) = s(µ),
and we write their composition µν = µ1µ2 . . . µ|µ|ν1ν2 . . . ν|ν|.

s(ν) ν //

µν
%%LLLLLLLLLL r(ν) = s(µ)

µ

��
r(µ)

2.2 Graph Products

Given two graphs E = (E0, E1, rE , sE) and F = (F 0, F 1, rF , sF ), there are various ways
of combining them to form a larger graph. This larger graph is then usually called their
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product graph. We now define several graph products that we will discuss. Note that each
of these products is associative and commutative. As a visual aid, we will illustrate each
of these product graphs for the following graphs E,F .

E : u1

��
v1

F : u2 // ++v2 // w2

Definition 2.1. The (disjoint) union of E with F is the graph E ∪F = (E0 ∪F 0, E1 ∪
F 1, r∪, s∪) such that for all e ∈ E1, we define r∪(e) = rE(e) and s∪(e) = sE(e), and for
all e ∈ F 1 we define r∪(e) = rF (e) and s∪(e) = sF (e).

E ∪ F : u1

��
v1

u2 // ++v2 // w2

Note that here it is assumed that E0 and F 0 are disjoint. Also note that the union of a
graph G with a copy of itself n times is denoted nG.

Definition 2.2. The box (cartesian) product of E with F is the graph E�F = (E0 ×
F 0, (E1×F 0)∪ (E0×F 1), r�, s�), where r�, s� are defined as follows: For all e ∈ E1, f ∈
F 1, u ∈ E0, v ∈ F 0,

r�(e, v) = (rE(e), v) r�(u, f) = (u, rF (f))

s�(e, v) = (sE(e), v) s�(u, f) = (u, sF (f))

E�F : (u1, u2) // --(u1, v2) // (u1, w2)//

(v1, u2) // --��
(v1, v2) //

��
(v1, w2)

��

Definition 2.3. The tensor (categorical) product of E with F is the graph E ×
F = (E0 × F 0, E1 × F 1, r×, s×), such that for all (e, f) ∈ E1 × F 1 we define r×(e, f) =
(rE(e), rF (f)) and s×(e, f) = (sE(e), sF (f)).

E × F : (u1, u2)

%%KKKKKKKKK

**UUUUUUUUUUUUUUUUUUU (u1, v2)

%%KKKKKKKKKK
(u1, w2)

(v1, u2) (v1, v2) (v1, w2)
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Definition 2.4. Let E and F be graphs such that E0 = F 0. Then the overlay product of
E with F is the graph E ./ F = (E0 = F 0, E1 ∪ F 1, r./, s./), such that for all e ∈ E1 ∪ F 1

if e ∈ E1 then r./(e) = rE(e) and s./(e) = sE(e), and if e ∈ F 1 then r./(e) = rF (e) and
s./(e) = sF (e).

We then define the strong product of E with F to be E � F = (E�F ) ./ (E × F ).

E � F : (u1, u2)

%%KKKKKKKKK

**UUUUUUUUUUUUUUUUUUU
--//

��

(u1, v2)

%%KKKKKKKKKK
//

��

(u1, w2)

��
(v1, u2) // 11(v1, v2) // (v1, w2)

Definition 2.5. Let G be a countable group, and E = (E0, E1, rE , sE) be a row-finite
graph. Then, given a function c : E1 → G, we define the skew product graph E(c) =
(G× E0, G× E1, r, s), where for all (g, e) ∈ E(c)1 we have

r((g, e)) = (gc(e), rE(e)),

s((g, e)) = (g, sE(e)).

This graph E(c) is sometimes referred to as a derived graph, and together with the labeling
c : E1 → G it is referred to as a voltage graph. Notice that the formation of the skew
product graph is a very different operation from the others we have discussed, in that it is
not a binary operation on two graphs, but a product of a group with a graph. Also notice
that when c maps every edge of E to the identity of G the resulting skew product graph is
isomorphic to the graph |G|E (i.e. E unioned with itself |G| times).

E : x e //

h
��

y

f

��
w

g
// z

G = Z/3Z

c : e 7→ 0, g 7→ 0, f 7→ 1, h 7→ 2
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E(c) : (0, x) //

��

(0, y)

**VVVVVVVVVVVVVVVVVVVVVVVV (1, x) ///o/o/o

tt t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4
(1, y)

}} }=
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}=
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}=
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}=
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}=
}=

}=
}=

}=
}=

}=
}=

}=
}=

(0, w) // (0, z) (1, w) ///o/o/o (1, z)

(2, x) +3

08hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh (2, y)

KS

(2, w) +3 (2, z)

Additionally, it is easily shown that for a cyclic group G =< 1 > and an arbitrary graph
E, the skew product graph E(c), where c : e 7→ 1 for all e ∈ E1, is isomorphic to the tensor
product graph EG×E, where EG is the graph with vertices as elements of G, directionally
adjacent to each other if and only if their difference in G is 1. For we see that the vertex
sets of these two graphs are the same, since

E(c)0 = G× E0 = E0
G × E0 = (EG × E)0

so we need only show that the edge sets are the same and there is a mapping preserving
the structure maps of E(c) and EG × E. Consider an edge ((h, b), (g, a)) ∈ E(c)1 for
(h, b), (g, a) ∈ E(c)0 (i.e. an edge from (g, a) to (h, b)). By the definition of a skew product
graph, this is equivalent to a ∼ b in E and h = g+ c((b, a)) = g+ 1 in G. This means that
(h, g) ∈ E1

G, and so the conditions for ((h, b), (g, a)) ∈ E(c)1 are equivalent to those for
((h, b), (g, a)) ∈ (EG × E)1 . Thus, the edge sets of these two graphs and their respective
structure maps are the same. Hence, E(c) ∼= EG × E, for c as chosen above.

2.3 Higher-rank Graphs

The formal definition of a k-graph, given in [1, p.89], relies on some simple concepts from
category theory. This is the definition we give here.

Definition 2.6. A category C consists of two classes C0 of objects and C∗ of morphisms,
and two functions r, s : C∗ → C0 called codomain and domain respectively, as well as a
partially defined product (composition) (f, g) 7→ f ◦ g from {(f, g) ∈ C∗×C∗ : s(f) = r(g)}
to C∗, satisfying

r(f ◦ g) = r(f) and s(f ◦ g) = s(g)

(f ◦ g) ◦ h = f ◦ (g ◦ h) when s(f) = r(g) and s(g) = r(h),

and distinguished elements (identity morphisms) {iv ∈ C∗ : v ∈ C0} satisfying
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r(iv) = v = s(iv) and iv ◦ f = f, g ◦ iv = g when r(f) = v and s(g) = v.

A functor F : C → D is a pair of maps F 0 : C0 → D0 and F ∗ : C∗ → D∗ which respect
the domain and codomain maps and composition, and which satisfy F ∗(iv) = iF 0(v).

Given categories C and D, the product category C ×D is the category with

(C ×D)0 = C0 ×D0

(C ×D)∗ = C∗ ×D∗, with composition component-wise from the contributing cate-
gories and identities (1A, 1B) where A ∈ C0, B ∈ D0.

We will immediately become less formal and write fg for f◦g. We also write f : s(f)→ r(f)
to indicate a morphism f , together with its domain and codomain.

Example 2.7.

Examples of categories are:

Grp with objects groups and morphisms group homomorphisms

Ab with objects abelian groups and morphisms group homomorphisms

Ring with objects rings and morphisms ring homomorphisms

Top with objects topological spaces and morphisms homeomorphisms

Set with objects arbitrary sets and morphisms mappings between them

While these are the standard morphisms for these classes of objects, any other set of
mappings satisfying the necessary properties would make them into categories. For
example, the set of all rings with morphisms between them being group homomor-
phisms is a category distinct from Ring.

Example 2.8.

Given a graph G, there is an associated path category P (G), with objects G0 and
morphisms G∗, the set of all finite paths in the graph G. When it is clear that we
are speaking of the path category of G, we will often denote it G∗ and identify its
objects with the paths of length zero.

It is natural to visualize a category with its diagram, which is a graph, where we draw the
objects as vertices and the morphisms as edges, generally suppressing the loops that arise
as identity morphims.

Example 2.9.
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Let C be the category with objects C0 = {a, b} and morphisms C∗ = {ia, e : a →
b, ib}. Then the product category of C with itself is the category C ×C with objects

(C × C)0 = {(a, a), (a, b), (b, a), (b, b)}, and morphisms
(C × C)∗ = {(ia, ia), (ia, e), (ia, ib), (e, ia), (e, e), (e, ib), (ib, ia), (ib, e), (ib, ib)},

where the domain and codomain for each of these morphisms is determined by the
definition of the product category. The digrams for C and C × C are then:

C : a e // b C × C : (a, a)
(ia,e) //

(e,e)

##GGGGGGGG

(e,ia)
��

(a, b)

(e,ib)
��

(b, a)
(ib,e)

// (b, b)

Definition 2.10. A monoid (M, ·) is a set M together with a binary operation ·, satisfying

a · (b · c) = (a · b) · c (associativity), for all a, b, c ∈M ,

there exists an identity e ∈M such that e · a = a · e = a, for all a ∈M .

Note that a monoid may equivalently be defined as a one-object category. That is, the
morphisms in the one-object category are the elements of the monoid, and the binary op-
eration · is composition of morphisms in the category.

Example 2.11.

(Nk,+) is a monoid, where addition is component-wise addition of natural numbers,
and the identity is the k-tuple with zeros in all entries. We find it useful to define ei
to be the k-tuple with a 1 in the ith entry and zeros elsewhere.

Much of our discussion will be dependent on the following definition of a higher-rank graph
taken from Chapter 10 of [9].

Definition 2.12. A graph of rank k is a countable category Λ, together with a functor
d : Λ→ Nk, called the degree map, with the following unique factorization property:

for every morphism λ and every decomposition d(λ) = m + n with m,n ∈ Nk, there
exist unique morphisms µ and ν such that d(µ) = m, d(ν) = n and λ = µν.

We also call (Λ, d) a k-graph or just a higher-rank graph, and we usually abbreviate
(Λ, d) to Λ. Λn is the set of morphisms, or paths, of degree n. And Λm(v) := {λ ∈ Λm :
r(λ) = v}. (Λ, d) is row-finite if for each v ∈ Λ0 and m ∈ Nk, the set Λm(v) is finite.
(Λ, d) has no sources if Λm(v) 6= ∅ for all v ∈ Λ0,m ∈ Nk. A row-finite k-graph Λ is
locally convex if the existence of λ ∈ Λei and µ ∈ Λej with i 6= j and r(λ) = r(µ) implies
the existence of ν ∈ Λej with r(ν) = s(λ); this is automatic is Λ has no sources.
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Note that we are implicitly identifying the objects in the category with the corresponding
identity morphisms. For the purposes of this paper, we will be considering only graphs of
ranks 1 and 2.

Example 2.13.

The path category of a graph G is a 1-graph, with d(µ) = |µ| for all µ ∈ G∗.

Definition 2.14. The 1-skeleton of 2-graph Λ is a 2-colored graph with vertices being the
objects of Λ and edges of one color being the paths in Λ(0,1) and of the color being the paths
in Λ(1,0).

In our 1-skeletons, we will represent one color with squiggly edges and the other with
straight edges.

Proposition 2.15. Let (Λ1, d1), (Λ2, d2) be 1-graphs. Then, their product category (Λ1 ×
Λ2, d1 × d2) is a 2-graph where d1 × d2 : Λ1 × Λ2 → N2 is given by d1 × d2(λ1, λ2) =
(d1(λ1), d2(λ2)), for λ1 ∈ Λ1, λ2 ∈ Λ2.

This is a special case of Proposition 1.8 of [8],and its proof is straightforward.

Example 2.16.

Let G be the following graph:
a e // b .

Then, we see that the path category G∗ is C from example 1.9,and that G∗ ×G∗ is
a two graph with the degree map d = d1 × d1 as given in the previous proposition.

Its 1-skeleton is

(a, a)
(ia,e) //

(e,ia)
�� �O
�O
�O

(a, b)

(e,ib)

�� �O
�O
�O

(b, a)
(ib,e)

// (b, b)

In the 2-graph G∗×G∗, the path (e, e) is equal to both of the paths (e, ib)(ia, e) and
(ib, e)(e, ia) by the unique factorization property of 2-graphs, so

d(e, e) = d((e, ib)(ia, e)) = d((ib, e)(e, ia)) = (1, 1).
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3 Graph Algebras

Definition 3.1. A C*-algebra A is a vector space over C, together with a binary operation
· called multiplication, a map ∗ : A→ A called involution, and a map ‖ · ‖ : A→ R called
the norm, such that for all x, y, z ∈ A, λ ∈ C we have

(x+ y) · z = x · z + y · z (1)
x · (y + z) = x · y + x · z (2)
(ax) · (by) = (ab)(x · y) (3)
(x · y) · z = x · (y · z) (4)
x∗∗ = x (5)
(yx)∗ = x∗y∗ (6)

(λx)∗ = λx∗ (7)
‖x‖ ≥ 0 with equality if and only if x = 0 (8)
‖λx‖ = |λ|‖x‖ (9)
‖x+ y‖ ≤ ‖x‖+ ‖y‖ (10)
‖x · y‖ ≤ ‖x‖‖y‖ (11)

‖x∗ · x‖ = ‖x‖2, (12)

and such that (A, ‖ · ‖) is a complete metric space.

A sub-C*-algebra of A is a nonempty subset of A which is a C*-algebra with respect
to the operations given on A.

Given a C*-algebra A and a subset S of A, the sub-C*-algebra of A generated by
S is the smallest C*-algebra of A that contains S, and we denote it by C∗(S). This can
equivalently be described as follows: For each n ∈ N, put

Wn = {x1x2 . . . xn : xj ∈ S ∪ S∗},

where S∗ = {x∗ : x ∈ S}, and put W = ∪∞n=1Wn. The set W is the set of all words in
S ∪ S∗. Using that W = W ∗ and that W is closed under multiplication, if follows that
C∗(S) = span(W ).

Remark 3.2.

Conditions (8), (11), and (12) above together imply that the involution in a C*-
algebra is isometric since for all a ∈ A,

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖ ⇒ ‖a‖ ≤ ‖a∗‖.
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In particular, ‖a‖ ≤ ‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖ ⇒ ‖a‖ = ‖a∗‖.

Definition 3.3. A *-homomorphism ϕ : A → B between C*-algebras A and B is a
linear multiplicative map which satisfies ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

Example 3.4.

1. Let X be a compact Hausdorff space. C(X), the set of all complex-valued con-
tinuous functions on X is a C*-algebra with operations defined as follows for all
f, g ∈ C(X), x ∈ X, c ∈ C.

(f + g)(x) = f(x) + g(x)
(cf)(x) = cf(x)

f∗(x) = f(x)
‖f‖ = max

x∈X
|f(x)|.

2. For each n = 1, 2, 3, . . . , the complex vector space Mn(C) of n × n matrices over
C, viewed as operators on Cn, is a C*-algebra with multiplication defined as matrix
multiplication, the involution defined as taking the conjugate transpose, and the
norm being the operator norm on matrices, given by ‖A‖op = sup‖x‖≤1 ‖Ax‖ =
sup‖x‖=1 ‖Ax‖. This example is essentially the same as the following example, in
finite dimensional cases.

3. An especially important example is the following. B(H), the algebra of all bounded
operators on a Hilbert space H, is a C*-algebra with the usual adjoint operation.
This follows from the well-known identity

‖A∗A‖ = sup
‖x‖=‖y‖=1

|(A∗Ax, y)| = sup
‖x‖=‖y‖=1

|(Ax,Ay)| = ‖A‖2.

Remark 3.5.

The Gelfand-Naimark theorem says that for any C*-algebra A, there exist a
Hilbert space H and an isometric *-homomorphism ϕ : A → B(H), so that every
C*-algebra is isomorphic to a sub-C*-algebra of B(H). We will usually be dealing
with finite dimensional cases in this paper, so our C*-algebras will usually be sub-
algebras of Mn(C) for some n ∈ N.

3.1 Cuntz-Krieger Families for Directed Graphs

Every row-finite directed graph has an associated C*-algebra. In cases where we do not
assume row-finiteness, there still may be ways of forming a C*-algebra, but these cases are
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not addressed here. The following is a description of a method for finding the associated
C*-algebra for a given graph. Some uniqueness issues are then discussed.

Because of the Gelfand-Naimark theorem, as we attempt to form the graph algebra of
a particular graph, we may always have in mind some Hilbert space on which the el-
ements of the algebra will be operators. A nice Hilbert space to work with is `2 ={

(x0, x1, . . . ) : xi ∈ C,
∑
|xi|2 <∞

}
, if the graph is countable. As we shall see, it is of-

ten important that the Hilbert space be infinite dimensional, hence the choice of `2. In this
paper, we will be working mostly with finite dimensional Hilbert space, but we will provide
an example of an infinite dimensional case for completeness.

Definition 3.6. Let H be a Hilbert space and E be a row-finite graph. A Cuntz-Krieger
E-family {S, P} on H is a set P = {Pv : v ∈ E0} of mutually orthogonal projections and
S = {Se : e ∈ E1} of partial isometries on H such that

1. S∗eSe = Ps(e) for all e ∈ E1

2. Pv =
∑
{e∈E1:r(e)=v} SeS

∗
e whenever this is not an empty sum.

From the theory of partial isometries, we have Se = SeS
∗
eSe, and so by the first Cuntz-

Krieger relation Se = SePs(e). The second relation then says that SeH ⊂ Pr(e)H. Thus Se
is an isometry of Ps(e)H onto a closed subspace of Pr(e)H. Expressed algebraically, we get
the important relation

Se = Pr(e)Se = SePs(e).

In general there may be several Cuntz-Krieger E-families for a given graph E, generating
non-isomorphic C*-algebras. But the following proposition given in [9] states that there is
a specific Cuntz-Kreiger E-family which generates a C*-algebra that has a universal prop-
erty. This C*-algebra is then called the graph algebra of E and is denoted C∗(E).

Proposition 3.7. For any row-finite directed graph E, there is a C*-algebra C∗(E) gener-
ated by a Cuntz-Krieger E-family {s, p} such that for every Cuntz-Krieger E-family {T,Q}
in a C*-algebra B, there is a homomorphism πT,Q of C∗(E) into B satisfying πT,Q(se) = Te
for every e ∈ E1 and πT,Q(pv) = Qv for every v ∈ E0.

In [9], this C*-algebra is then shown to be unique up to isomorphism. That is, any other
C*-algebra generated by a Cuntz-Krieger E-family which has this universal property is
isomorphic to C∗(E).

The following is a proposition which is proved in [9], which is useful in interpreting the link
between a graph and its C*-algebra.
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Proposition 3.8. Suppose that E is a row-finite graph and {S, P} is a Cuntz-Krieger
E-family in a C*-algebra B. Let µ, ν ∈ E∗. Then

a) if |µ| = |ν| and µ 6= ν, then (SµS∗µ)(SνS∗ν) = 0

b) S∗µSν =


S∗µ′ if µ = νµ′ for some µ′ ∈ E∗
Sν′ if ν = µν ′ for some ν ′ ∈ E∗
0 otherwise

c) if SµSν 6= 0, then µν is a path in E and SµSν = Sµν

d) if SµS∗ν 6= 0, then s(µ) = s(ν).

What this means is that the C*-algebra has encoded in it the structure of the graph. A
path µ in the graph corresponds to the element Sµ in the C*-algebra. If the composition
of two paths µ and ν in the graph is possible, then this composition µν is represented in
the C*-algebra by the multiplication of Sµ and Sν , which is Sµν . On the other hand, if
you try to “compose” two paths that are not composable in the graph, then the result is
zero. However, not every non-zero element in the C*-algebra represents a path in the graph.

Example 3.9.

1. Let E be the following graph:
a e // b

We define a Cuntz-Krieger family {Pv, Pw, Se} for this graph on C2 by

Pv(x, y) = (x, 0), Pw(x, y) = (0, y), and Se(x, y) = (0, x).

Then C∗(E) is C∗(Pv, Pw, Se) = C∗(Se). Representing these operators as matrices,
we find that C∗(E) ∼= M2(C).

2. Consider the graph E as follows:

v
	e

w
f

oo

Here it is implied by the Cuntz-Krieger relations that PvH must be infinite-dimensional
as follows. Pv = SfS

∗
f + SeS

∗
e ⇒ dim(PvH) = dim(SfH) + dim(SeH). But Se

and Sf are isometries of PvH and PwH onto SeH and SfH respectively. Hence
dim(PvH) = dim(PwH) + dim(PvH). So if both orthogonal projections are non-zero
(this is referred to as non-degeneracy), then PvH is infinite-dimensional. Note, that
the simultaneous existence of the arrow f leading to v, and the loop based at v,
caused this phenomenon.

With this in mind, we define Pv(x0, x1, x2, . . . ) = (0, x1, x2, . . . ) and therefore (to
make H = `2 into a direct sum of the ranges of the orthogonal projections), define
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Pw(x0, x1, x2, . . . ) = (x0, 0, 0, . . . ). Since Sf = SfS
∗
fSf = SfPw, to define Sf , we must

simply decide where (x0, 0, 0, . . . ) should go, remembering to keep the map isometric,
and also that S2

f should be zero since ff is not a path in the graph. The easy choice
is Sf (x0, x1, x2, . . . ) = (0, x0, 0, 0, . . . ). Similarly, since Se = SePv, we need to decide
where Se should send (0, x1, x2, . . . ). Since PvH = SeH⊕SfH, we are forced to define
Se(x0, x1, x2, . . . ) = (0, 0, x1, x2, . . . ).

It is worth noting that the C*-algebra we get in this case is isomorphic to an im-
portant C*-algebra, called the Toeplitz C*-algebra, C∗(U), where U(x0, x1, . . . ) =
(0, x0, x1, . . . ) = (Se+Sf )(x0, x1, . . . ). Indeed, the generators are expressible in terms
of Se + Sf .

Pv + Pw = (Se + Sf )∗(Se + Sf )
Pv = (Se + Sf )(Se + Sf )∗

Se = (Se + Sf )Pv
Sf = (Se + Sf )Pw.

3. We can always find a Cuntz-Krieger E-family by following a simple procedure. Con-
sider the graph G:

a e // b c
foo

Since there are three vertices we require at least a 3-dimensional Hilbert space on
which there will be mutually orthogonal projections Pa, Pb, Pc. Noting that b is
the range of two different edges, the second Cuntz-Krieger relation at b says that
PbH = SeH ⊕ SfH. Thus, we require at least a 4-dimensional Hilbert space. We
demonstrate by example that this is enough.

Take the Hilbert space to be C4. Pa and Pc then need to be mutually orthogonal
projections onto 1-dimensional subspaces of C4. Take these to be Pa(w, x, y, z) =
(w, 0, 0, 0) and Pc(w, x, y, z) = (0, x, 0, 0). We take Pb to be the projection onto the
2-dimensional subspace of C4 that is orthogonal to both PaH and PcH. That is, we
take Pb(w, x, y, z) = (0, 0, y, z), and so PbH = span(0, 0, 1, 0)⊕ span(0, 0, 0, 1).

We then take Se to be an isometric linear transformation from PaH onto span(0, 0, 1, 0),
and Sf to be an isometric linear transformation from PcH onto span(0, 0, 0, 1), so
that PbH = SeH⊕SfH as required by the second Cuntz-Krieger relation. Explicitly
we take Se(w, x, y, z) = (0, 0, w, 0) and Sf (w, x, y, z) = (0, 0, 0, x).

Notice that the given operators satisfy only the relations implied by the Cuntz-
Krieger relations, and so C∗(G) = C∗({Pa, Pb, Pc, Se, Sf}). One easily checks that
this is isomorphic to M2(C)⊕M2(C).
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3.2 Cuntz-Krieger Families for Higher-rank Graphs

There is a slightly modified set of Cuntz-Krieger relations for dealing with higher rank
graphs. For a full discussion of the motivation for using these new relations, see [10]. In
order to define these relations we must introduce the following notation.

Definition 3.10. Let m = (m1,m2, . . . ,mk) and n = (n1, n2, . . . , nk) be elements of Nk.
Then by m ≤ n we mean mi ≤ ni for i = 1, 2, . . . k.

Let (Λ, d) be a k-graph. For q ∈ Nk and v ∈ Λ0 we define

Λ≤q := {λ ∈ Λ : d(λ) ≤ q and Λei(s(λ)) = ∅ when d(λ) + ei ≤ q},

and
Λ≤q(v) := {λ ∈ Λ≤q : r(λ) = v}.

In other words, Λ≤q consists of the paths of degree q and the paths λ with d(λ) ≤ q which
cannot be non-trivially extended to paths λµ with d(λµ) ≤ q.

Definition 3.11. Let Λ be a row-finite k-graph. A Cuntz-Krieger Λ-family in a C*-
algebra B consists of a family of partial isometries {sλ : λ ∈ Λ} satisfying the Cuntz-
Krieger relations:

1. {sv : v ∈ Λ0} is a family of mutually orthogonal projections

2. sλµ = sλsµ for all λ, µ ∈ Λ with s(λ) = r(µ)

3. s∗λsλ = ss(λ)

4. sv =
∑

λ∈Λ≤m(v) sλs
∗
λ for all v ∈ Λ0 and m ∈ Nk.

Note that in relation 4, the sum is not taken over all paths entering v as before. Instead,
we get an equation involving sv for each degree m ∈ Nk. In [10] the uniqueness theorems
involving graph algebras using these Cuntz-Krieger relations are proved for locally convex
k-graphs.

Proposition 3.12. Let E be a row-finite graph and E∗ be its path category. Then C∗(E) ∼=
C∗(E∗).

Proof. Let ϕ : C∗(E)→ C∗(E∗) be the *-homomorphism given by

Pv 7→ sv for all v ∈ E0,

Se 7→ se for all e ∈ E1.

By proposition 2.8(c) ϕ is a *-isomorphism.
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When k = 1 the Cuntz-Krieger relations (1), (3), and (4) for E∗ are the same as the
Cuntz-Krieger relations for E
Proposition 3.13. Let Λ1,Λ2 be 1-graphs. Then the 2-graph Λ1 × Λ2 is locally convex.

Proof. Let e ∈ Λ1
1, f ∈ Λ1

2, a ∈ Λ0
1, and b ∈ Λ0

2, and let λ = (e, ib) ∈ Λ1 × Λ(1,0)
2 and

µ = (ia, f) ∈ Λ1 × Λ(0,1)
2 with r(e) = a and r(f) = b. Then there exist ν1 = (is(e), f) ∈

Λ1 × Λ(0,1)
2 and ν2 = (e, is(f)) ∈ Λ1 × Λ(1,0)

2 . Then,

r(ν1) = (s(e), r(f)) = (s(e), b) = s(λ), and
r(ν2) = (r(e), s(f)) = (a, s(f)) = s(µ).

Remark 3.14.

The 2-graphs that we will be considering in this paper are those that are product
categories of 1-graphs, and so will be locally convex by the previous proposition.
Hence, the graph algebras of our 2-graphs will be unique under the definition given
above, and by proposition 3.11 of [10] the fourth Cuntz-Krieger relation listed above
can be replaced with the simpler relation

4′. sv =
∑

λ∈Λei (v)

sλs
∗
λ for v ∈ Λ0 and i = 1, 2 with Λei(v) 6= ∅.

Example 3.15.

Consider the following colored graph E.

w
e1 //

f1
�� �O
�O
�O

x

f2
��
�O
�O
�O

y
e2

// z

There is a unique 2-graph Λ for which this is the 1-skeleton. We define a set of partial
isometries on C4 as follows.

Sw(a, b, c, d) = (a, 0, 0, 0) Sx(a, b, c, d) = (0, b, 0, 0)
Sy(a, b, c, d) = (0, 0, c, 0) Sz(a, b, c, d) = (0, 0, 0, d)
Se1(a, b, c, d) = (0, a, 0, 0) Sf1(a, b, c, d) = (0, 0, a, 0)
Sf2(a, b, c, d) = (0, 0, 0, b) Se2(a, b, c, d) = (0, 0, 0, c).

Check that these operators form a Cuntz-Krieger Λ-family in B(C4). Remember
that in this 2-graph, e2f1 = f2e1. The fourth Cuntz-Krieger relation at z says
Sz = Se2S

∗
e2 = Sf2S

∗
f2

= Se2f1S
∗
e2f1

= Sf2e1S
∗
f2e1

, which is easily verified. It is clear
that the C*-algebra generated by this Λ-family is isomorphic to M4(C).
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4 C*-algebras of Graph Products

With the background from sections 1 and 2, we now provide a set of results discussing the
structure of the C*-algebras of product graphs. In each of the following subsections, we
will focus on a specific algebra structure.

4.1 Direct Sum of Graph Algebras

Proposition 4.1. Let E,F be row-finite directed graphs. Then

C∗(E)⊕ C∗(F ) ∼= C∗(E ∪ F ).

Proof. C∗(E) is generated by some Cuntz-Krieger E-family {S1, P1} and C∗(F ) is gener-
ated by some Cuntz-Krieger F-family {S2, P2} by proposition 2.7. So

C∗(E) = C∗(S1, P1) ⊂ C∗(S1, P1, S2, P2), and
C∗(F ) = C∗(S2, P2) ⊂ C∗(S1, P1, S2, P2).

By proposition 2.8,if S ∈ C∗(E), T ∈ C∗(F ), then ST = 0. Hence by proposition A.7 in
[9],

C∗(E)⊕ C∗(F ) ∼= span{C∗(E) ∪ C∗(F )}
= span{C∗(S1, P1) ∪ C∗(S2, P2)}
= C∗(S1, P1, S2, P2)
= C∗(E ∪ F ).

This last equality is seen by noting that a universal Cuntz-Krieger E ∪ F -family will be
the union of universal Cuntz-Krieger E and F -families.

4.2 Crossed Product of a Graph Algebra

The following is the discussion of discrete crossed products found in [1].Once this has been
defined, we will summarize the result of [7]relating the crossed product of a graph algebra
to the graph algebra of a factor graph.

A C*-dynamical system (A, G, α) consists of a C*-algebra A together with a homomor-
phism α of a locally compact group G into Aut(A). We will denote by αs the automorphism
α(s) for s in G.
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Consider the algebra AG of all finite sums f =
∑

t∈GAtt with coefficients in A and mul-
tiplication determined by the formal rule tAt−1 = αt(A). Then if g =

∑
u∈GBuu we

have

fg =
∑
t∈G

∑
u∈G

AttBuu

=
∑
t∈G

∑
u∈G

At(tBut−1)tu

=
∑
t∈G

∑
u∈G

Atαt(Bu)tu

=
∑
s∈G

(
∑
t∈G

Atαt(Bt−1s))s.

The adjoint is determined by s∗ = s−1, so that

(As)∗ = s∗A∗ = s−1A∗ss−1 = α−1
s (A∗)s−1.

Hence
f∗ =

∑
t∈G

αt(A∗t−1)t.

Define a norm by
||f || = supσ||σ(f)||

where σ runs over all *-representations of AG. By the discussion in [1], this supremum is
always bounded by ||f ||1 =

∑
t∈G ||At||. Taking the completion of AG with respect to this

norm gives a C*-algebra A×α G called the crossed product of A with G.

With the notion of a group action on a graph, we expect the crossed product of this graph’s
C*-algebra to be related to the algebra of a graph derived from this action. This turns out
to be true as shown by Kumjian and Pask in [7] by means of a well-known result in group
theory, which involves the skew product notion.

Proposition 4.2. If E is a locally finite directed graph and λ : G→ Aut(E) a free action
then

C∗(E)×λ G ∼= C∗(E/G)⊗K(`2(G)),

where K(`2(G)) is the algebra of compact operators on `2(G) and E/G is the graph whose
vertices are the orbits of E0 under the action of G, two vertices (orbits) A,B being adjacent
iff there are vertices a ∈ A, b ∈ B such that a and b are adjacent.

4.3 Tensor Product of Graph Algebras

The following statement is part of Corollary 3.5 in [8].
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Lemma 4.3. Let (Λi, di) be ki-graphs for i = 1, 2, then C∗(Λ1 × Λ2) ∼= C∗(Λ1) ⊗ C∗(Λ2)
via the map s(λ1,λ2) 7→ sλ1 ⊗ sλ2 for (λ1, λ2) ∈ Λ1 × Λ2.

Here, Λ1 × Λ2 is the k1 + k2-graph that is the product category of Λ1 and Λ2. In the case
when Λ1,Λ2 are 1-graphs, we get a 2-graph. Since the path category of any directed graph
becomes a 1-graph, this statement says that when we form the 2-graph from two directed
graphs, the resulting graph algebra is isomorphic to the tensor product of the graph alge-
bras of the directed graphs.

Example 4.4.

The 2-graph in example 2.14 is the product category of the 1-graph in example 2.9(1)
with itself, and we see that their associated C*-algebras satisfy the above proposition,
that is M2(C)⊗M2(C) ∼= M4(C).

Lemma 4.5. Let, Λ1,Λ2 be 1-graphs. Then the resulting 2-graph, Λ1 × Λ2, has colorless
1-skeleton isomorphic to the box product Λ1�Λ2.

Proof. Consider the 1-skeleton of the 2-graph Λ1×Λ2, and call it E. We then have

E0 = (Λ1 × Λ2)0 = Λ0
1 × Λ0

2 = (Λ1�Λ2)0,

and so the vertex sets of our two 1-graphs are the same. Two vertices (u1, u2), (v1, v2)
are then adjacent in E, ignoring coloring, if there is a path λ ∈ (Λ1 × Λ2)∗ such that
s(λ) = (u1, u2), r(λ) = (v1, v2) and either d(λ) = (0, 1) or d(λ) = (1, 0). This is equiv-
alent to the requirement that either u1 = v1 in Λ0

1 and (v2, u2) ∈ Λ1
2, or (v1, u1) ∈ Λ1

1

and u2 = v2 in Λ0
2, which are the exact requirements for adjacency in the box product

Λ1�Λ2. Hence, E1 = (Λ1�Λ2)1. Thus, we conclude that the colorless 1-skeleton of the 2-
graph constructed from Λ1 and Λ2 is, in fact, the box product of these same two graphs.

Remark 4.6.

It is simple to extend the proof of the previous lemma to an argument for arbitrary
k1- and k2-graphs, Λ1 and Λ2. We see that the box product of the 1-skeletons for Λ1

and Λ2 is the 1-skeleton for the (k1 + k2)-graph Λ1 × Λ2.

The previous two lemmas lead naturally to the following theorem.

Theorem 4.7. The tensor product of the C*-algebras associated with two 1-graphs Λ1,Λ2

is isomorphic to the C*-algebra of the 2-graph Λ1×Λ2, whose 1-skeleton is the box product
of these 1-graphs.

19



4.4 Subalgebras of the Tensor Product of Graph Algebras

Let E,F be directed graphs, and let E∗ × F ∗ be the 2-graph formed from the product
category of the path categories of E and F . Consider the C*-algebra associated with this
2-graph, C∗(E∗ × F ∗). We show that the C*-algebra associated with the tensor product
graph E × F is a sub-C*-algebra of C∗(E∗ × F ∗) ∼= C∗(E∗)⊗ C∗(F ∗), and we specify the
generators for this algebra.

We find the following definition from [8]to be useful in this process.

Definition 4.8. Let f : Nj → Nk be a monoid homomorphism, then if (Λ, dk) is a k-graph
we may form the j-graph (f∗(Λ), dj) as follows: f∗(Λ) = {(λ, n) ∈ (Λ,Nj) : dk(λ) = f(n)},
with

dj((λ, n)) = n,

s((λ, n)) = s(λ), and

r((λ, n)) = r(λ).

Note that in the above definition we can identify the objects of f∗(Λ) with those of Λ.

Define the monoid homomorphism f : N → N2 by f(m) = (m,m). From the 2-graph
(E∗ × F ∗, d2) together with f , we have a 1-graph (f∗(E∗ × F ∗), d1), where

f∗(E∗ × F ∗) = {(λ, n) ∈ (E∗ × F ∗,N) : d2(λ) = (n, n)},

with the objects of f∗(E∗ × F ∗) identified with those of E∗ × F ∗, and with

d1((λ, n)) = n,

s1((λ, n)) = s2(λ), and
r1((λ, n)) = r2(λ).

We notice that the set of all paths in f∗(E∗ × F ∗) consists of all paths λ = (e, f) in
E∗ × F ∗ such that e ∈ E∗, f ∈ F ∗ are of equal length. But this describes exactly the
set of all paths in the tensor product graph E × F , and so with the observation that
(E×F )0 = (E∗×F ∗)0 = (f∗(E∗×F ∗))0, we have f∗(E∗×F ∗) = (E×F )∗. We have thus
shown that f∗(E∗ × F ∗) ∼= E × F .

By proposition 1.11 of [8], there is a *-homomorphism πf : C∗((E × F )∗)→ C∗(E∗ × F ∗)
associated with f such that s(λ,n) 7→ sλ, where {s(λ,n)} is a Cuntz-Krieger (E × F )∗-
family generating C∗((E × F )∗) and {sλ} is a Cuntz-Krieger E∗ × F ∗-family generating
C∗(E∗ × F ∗). Thus, taking {sIm(πf )} to be the subset of {sλ} that forms the image of
{s(λ,n)} under πf , we have

C∗((E × F )∗) ∼= C∗({sIm(πf )}).
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It is clear that this is a sub-C*-algebra of C∗({sλ}) = C∗(E∗ × F ∗) ∼= C∗(E) ⊗ C∗(F ).
Hence, we conclude that C∗(E×F ) ∼= C∗((E×F )∗) is a sub-C*-algebra of C∗(E)⊗C∗(F ) ∼=
C∗(E∗×F ∗), with generating set {sIm(πf )}, that is, the set of all paths (λ1, λ2) ∈ E∗×F ∗
such that d1(λ1) = d1(λ2).

We have now shown the following proposition.

Proposition 4.9. Let E,F be row-finite graphs, and E∗, F ∗ their path categories. Then
there is an isomorphic copy of C∗(E × F ) in C∗(E∗ × F ∗) ∼= C∗(E)⊗ C∗(F ).

5 Concluding Remarks

It is natural to consider what other graph products yield C*-algebras that might be subal-
gebras of the C*-algebra associated with the 2-graph constructed as the product category
of two 1-graphs.

It is at first tempting to look for a monoid morphism f that would give f∗(E∗ × F ∗) =
(E�F )∗ and result in C∗((E�F )∗) as a subalgebra of C∗(E∗×F ∗), as given by the image
of πf . However, we show with a counterexample that there is no such f .

Consider the following graph and its box product graph:

E : • // • E�E : • //

��

•

��
• // •

The following proposition from [9] allows us to easily compute their associated C*-algebras.

Proposition 5.1. Suppose E is a finite directed graph with no cycles, and w1, w2, . . . , wn
are the sources in E. Then for every Cuntz-Krieger E-family {S, P} in which each Pv is
non-zero we have

C∗(S, P ) ∼=
n⊕
i=1

M|s−1(wi)|(C),

where s−1(wi) = {µ ∈ E∗ : s(µ) = wi}.

We see that C∗(E) ∼= M2(C) and C∗(E�E) ∼= M5(C). Thus, C∗(E∗ × E∗) ∼= C∗(E) ⊗
C∗(E) ∼= M4(C) clearly does not contain M5(C) ∼= C∗(E�E) ∼= C∗((E�E)∗) as a sub-
C*-algebra. The difficulty that we have run into here is the additional projective space
required by the two incident edges on the lower-right vertex of E�E, giving a graph algebra
acting on a five-dimensional Hilbert space, instead of the four-dimensional Hilbert space
acted on by the graph algebra for E∗ × E∗.
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By the same counterexample, we cannot expect the strong product to be a sub-C*-algebra
of the tensor product, since the box product graph is a subgraph of the tensor product
graph.

We also see that the C*-algebra of the union of two graphs cannot in general be represented
as a sub-C*-algebra of the tensor product of their graph algebras, by a way of a simple
counterexample. Consider the trivial graph E with one vertex and no edges. Then by
proposition 4.10 C∗(E) ∼= C and C∗(E ∪ E) ∼= C⊕ C ∼= C2. This is clearly not a sub-C*-
algebra of C⊗ C ∼= C.
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