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Abstract

The topological entropy of a dynamical system is known to be equal to or
greater than all of its subsystems. We show conditions in which subsystems
have equal topological entropy. Furthermore, we characterize systems con-
taining invariant subsets of equal entropy that are weakly embeddable in a
symbolic dynamical system. It turns out that compact ε-expansive dynamical
systems always contain such a subsystem.
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1. Introduction

The use of symbolic dynamics arose in 1898 when Jacques Hadamard
used infinite symbol sequences to study geodesics on negatively curved sur-
faces. Symbolic systems have a discrete phase space and time evolution, and
are used in many disciplines, including ergodic theory, information theory,
and computer simulations of continuous systems [1]. Through the use of
embedding maps, symbolic dynamical systems provide a rich framework to
study general dynamical systems. In order to discern whether two dynamical
systems are homeomorphic to each other, Adler-Konhiem-McAndrew intro-
duced topological entropy which quantitatively describes the complexity of
a system.
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In 2000, Akashi showed that ε-expansive dynamical systems with compact
and totally disconnected phase space can be embedded in symbolic dynamical
systems [2], and in 2006 Wang and Wei found necessary and sufficient condi-
tions for such embeddings [3]. In the same year, Fedeli showed that a system
being totally expansive is a necessary and sufficient condition for the system
being weakly embedded into a symbolic dynamical system [4]. In 2002 Sakai
gave a revised version of Akashi’s upper bound on the topological entropy
of an ε-expansive dynamical systems, and applies this to a Baire category
theoretic classification of expansive dynamical systems [5]. By dropping the
condition of being ε-expansive, in 2005 Akashi developed a product extension
of symbolic dynamical systems into which symbolic embeddings can be made
[6]. The first investigation into their properties appears in the 2009 paper by
Cheng, Wang, and Wei [7].

When a continuous space is discretized, information is necessarily dis-
carded. In this paper, the focus is to investigate the formation of a totally
disconnected space from a connected one in a way that minimizes the in-
formation lost. The aim of this is to provide a method to obtain entropy
preserving subsystems weakly embeddable in a symbolic dynamical system.

Section 2 presents a definition of topological entropy and other definitions
used in the paper. In section 3 we show sufficient conditions in which a
subsystem has topological entropy equal to the original system. In section 4
we show conditions for obtaining a totally disconnected subsystem such that
topological entropy is preserved, and corollaries to this result.

2. Notation and Preliminaries

2.1. Basic Concepts and Definitions

A topological dynamical system, denoted as (X,T ), consists of a topolog-
ical space X and a continuous map T : X → X. A set Z ⊆ X is said to be
invariant on T if T (Z) ⊆ Z. The restriction of T to Z, T |Z : Z → Z, deter-
mines a dynamical system (Z, T |Z), which is called a subsystem of (X,T ).

Throughout this paper, N denotes the set of all non-negative integers. Let
M be a finite set of symbols, and let MN be the set of all one sided infinite
sequences consisting of elements ofM. Let σ :MN →MN be the shift map
in which σ(a0a1a2 . . .) = a1a2a3 . . .. The dynamical system (MN, σ) is called
a symbolic dynamical system.

For some indexing positive integer n, consider a shift spaceMN
n with shift

map σn. The product space
∏∞

n=1MN
n together with a shift map

∏∞
n=1 σn de-
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fined as (
∏∞

n=1 σn)◦({rn}∞n=1) = {σnrn}∞n=1 forms a product symbolic dynami-
cal system. For information on the properties of product symbolic dynamical
systems see [7].

Let (X,T ) and (Y, S) be two topological dynamical systems. If there
exists a subspace Z of Y and a continuous injective map ϕ : X → Z such
that S ◦ ϕ = ϕ ◦ T , then (X,T ) is said to be weakly embeddable into (Y, S).
If in addition, ϕ is a homeomorphism then we say (X,T ) is embeddable in
(Y, S).

Let (X,T ) be a dynamical system. If there exists a countable partition of
X =

⋃
i∈N Pi such that for each Pi the restriction T |Pi

: Pi → X is injective,
then T is countably injective. A metric space X is totally bounded if for every
ε > 0 there is a finite subset A of X such that X =

⋃
{B(x, ε) : x ∈ A},

where B(x, ε) is the open ball of center x and radius ε.
A topological space is totally disconnected if the connected components of

X are one-point sets. We call a set X strongly zero-dimensional if for every
finite open cover U = {Ui : 0 ≤ i ≤ m} of X, there exists an open refinement
V = {Vi : 0 ≤ i ≤ m} such that Vi ⊂ Ui for i ∈ {0, . . . ,m} and Vi ∩ Vj = ∅
whenever i 6= j.

Let (X,T ) be a topological dynamical system and let d be a metric on
X. Then T is said to be ε-expansive if there exists some ε > 0 such that
for every distinct pair of points x, y ∈ X, there is some n ∈ N for which
d(T n(x), T n(y)) ≥ ε. A topological dynamical system (X,T ) is totally ex-
pansive if there is a finite closed and open partition B of X such that for any
pair x, y of distinct points of X there is some n ∈ N such that the points
T n(x) and T n(y) belong to different members of B.

Using the notion of totally expansive, Fedeli obtained necessary and suffi-
cient conditions for topological dynamical systems to be weakly embeddable
in symbolic dynamical systems. A corollary from his results, which we will
use later in the paper, is stated in Proposition 1 [4].

Proposition 1. Let (X,T ) be an ε-expansive topological dynamical system
whose phase space is a strongly zero-dimensional totally bounded metric space.
Then (X,T ) is totally expansive and can be weakly embedded into a symbolic
dynamical system.

The above proposition can be modified for weak embeddings into product
symbolic dynamical systems.
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Proposition 2. Let (X,T ) be a topological dynamical system. If X is a
strongly zero-dimensional and totally bounded metric space, then (X,T ) can
be weakly embedded into a product symbolic dynamical system.

If X is strongly zero dimensional and totally bounded, then for any ε > 0
there exists a finite covering of X by clopen balls of radius ε. From here,
the proof of Proposition 2 follows almost exactly the proof of Theorem 1
in Akashi’s paper [6]. Furthermore, if (X,T ) is a topological dynamical
system on a compact space and ϕ is a weak embedding map from (X,T ) to
an ordinary or product symbolic dynamical system, then ϕ is a embedding
map.

2.2. Definition of Topological Entropy

Let f : X → X be a continuous map on the space X with metric d. For
n ∈ N define a metric dn,f (x, y) = sup{d(f j(x), f j(y))|0 ≤ j < n : j ∈ N} .
A set S ⊂ X is (n, ε)-separated for f provided dn,f (x, y) > ε for every pair of
distinct points x, y ∈ S, x 6= y. Note that on a totally bounded metric space,
the (n, ε)-separated sets are finitely large. The number of different orbits of
length n as measured by ε is defined by

r(n, ε, f) = max{card(S) | S ⊂ X is a (n, ε)- separated set for f}.

To measure the growth rate of r(n, ε, f) as n increases, we define

h(ε, f) = lim sup
n→∞

1

n
log(r(n, ε, f)).

Note that r(n, ε, f) ≥ 1 for any pair (n, ε), so 0 ≤ h(ε, f) ≤ ∞. The topolog-
ical entropy of f is defined as

h(f) = lim
ε→0,ε>0

h(ε, f).

Topological entropy was introduced by Adler-Konhiem-McAndrew as an
invariant for continuous mappings on compact topological spaces [8]. We
may also use the definition of entropy on metric spaces, which was intro-
duced by Bowen [9] and independently by Dinaburg [10] which is equivalent
with the Adler-Konhiem-McAndrew version. Topological entropy quanti-
tatively describes complexity of a topological dynamical system. Positive
topological entropy implies Li-Yorke chaos, and for a topological dynamical
system (X, f), if X is compact, then h(ε, f) <∞ [11].
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3. Topological entropy

Theorem 1. Let (X,T ) be a topological dynamical system and let d be a
metric on X. If there exists an set Z ⊆ X such that Z is invariant for T
and dense in X, then

h(T ) = h(T |Z).

Proof For all n ∈ N, we find r(n, ε, T ) is bounded above by r(0, ε, T )n, thus
h(ε, T ) =∞ if and only if r(0, ε, T ) =∞. Suppose for some n ∈ N and ε > 0
that r(n, ε, T ) =∞. This implies h(T ) =∞. We show that h(T |Z) =∞ by
contradiction. If we assume h(T |Z) < ∞ then r(0, ε, T |Z) < ∞ for all ε > 0
i.e. Z is totally bounded. Since X contains a totally bounded dense subset,
X itself is totally bounded which contradicts the original assumption that
r(n, ε, T ) = ∞. This contradiction thus proves that if r(n, ε, T ) = ∞ then
h(T ) = h(T |Z) =∞.

Now suppose for all n ∈ N and ε > 0 that r(n, ε, T ) < ∞ and further,
there exists some n ∈ N and ε > 0 such that r(n, ε, T ) 6= r(n, ε, T |Z). This
means there is an (n, ε)-separated set S ⊂ X such that card(S) > r(n, ε, T |Z).

Fix ε0 > 0. The continuity of T implies that for each xi ∈ S there exist
a δi > 0 for which all y ∈ X such that d(xi, y) < δi implies dn,T (xi, y) < ε0.
As Z is dense in X, we can construct a set S0 ⊂ Z of cardinality equal to
that of S such that for each point xi ∈ S there exists a point yi ∈ S0 such
that dn,T (xi, yi) < ε0/2. By the triangle inequality, for all xi, xj ∈ S and
yi, yj ∈ S0 such that i 6= j, then |dn,T (xi, xj)− dn,T (yi, yj)| ≤ ε0. Thus, for all
n ∈ N, ε > 0, there exists an ε0 < ε such that r(n, ε, T ) = r(n, ε0, T |Z). This
means that for all ε > 0 there exists an ε0 < ε such that h(ε, T ) = h(ε0, T |Z).
Since h(T ) is determined as ε→ 0, we may conclude that h(T ) = h(T |Z).

�

Remark Since a compact subset of a Hausdorff space is closed, if X is a com-
pact Hausdorff space, then the only dense compact subspace is X itself. As
the definition of topological entropy given by Adler-Konhiem-McAndrew is
only for compact Hausdorff spaces, investigating entropy of dense subsystems
necessitates the Bowen-Dinaburg definition for nontrivial results.

4. Subsystems

Let Y be a subset of a topological space X. We say Y is nowhere dense
in X if the interior of its closure is empty. A set Y is meagre in X if it is a
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union of countably many nowhere dense subsets and a set Y is nonmeagre
in X if it is not meagre in X. A subset Y of X is comeagre if its complement
X\Y is meagre. A topological space X is a Baire space if every non-empty
open set is nonmeagre in X. For more on Baire Spaces and their properties,
we refer the reader to any standard text book on topology.

Let (X,T ) be a topological dynamical system. For a set M ⊂ X define
O−M =

⋃
p∈M

⋃
n∈N{x ∈ X|T n(x) = p}, and define O+

M =
⋃
p∈M{T n(p)|n ∈

N}. To characterize regions with empty interior mapped to by sets with non-
empty interior, let Ξ(X) =

⋃
T (int(U)) be the union over all U ⊂ X with

int(U) 6= ∅ and int(T (U)) = ∅. If there is no question as to which dynamical
system is being referred to, we will denote Ξ(X) by Ξ.

Lemma 1. Let (X,T ) be a topological dynamical system such that X is a
Baire Space. If a set B ⊆ X has an empty interior, is closed, and is disjoint
from O+

Ξ , then int(O−B) = ∅.

Proof Assume that T−1(B) is not nowhere dense. Since B is closed and
T is continuous, T−1(B) is closed and thus T−1(B) = T−1(B). Under the
assumption that T−1(B) is not nowhere dense, there must exist a nonempty
open set U ⊂ T−1(B). It follows that T (U) ⊂ B, and since B has an empty
interior, then T (U) ⊂ Ξ, implying that O+

Ξ is not disjoint with B. This
contradiction shows that a closed set in X\O+

Ξ with an empty interior has a
nowhere dense preimage. As X is a Baire space, the set O−B =

⋃
n∈N{M ⊂

X|T n(M) ⊆ B} has an empty interior. �

Remark For a topological dynamical system (X,T ) in which Ξ = ∅, if X
is a Baire space, then the iterated inverse image of a countable collection of
closed sets with empty interior has an empty interior.

Theorem 2. Let (X,T ) be a topological dynamical system such that X is
both a Baire and Hausdorff space and there are at most countably many
nontrivial connected components of X. There exists a set Y ⊂ X such that
X\Y is totally disconnected, dense in X, and invariant on T if the set O+

Ξ

is strongly zero-dimensional.

Proof Let X = D0 ∪C0 where D0 is the largest totally disconnected subset
of X and for an indexing set I, the set C0 =

⋃
i∈I C0,i is the union of all

nontrivial connected components of X. We wish to show that for every C0,i

we can select a set B0,i ⊂ C0,i\O+
Ξ such that C0,i\B0,i is not connected.
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For a given set C0,i, if there are at least two points in both O+
Ξ and C0,i

then take a finite open covering of O+
Ξ ∩ C0,i denoted U0,i =

⋃
0≤k≤m U

k
0,i

for m ≥ 2. Since O+
Ξ is strongly zero-dimensional, there exists an open

refinement V0,i =
⋃

0≤k≤m V
k

0,i such that V j
0,i ∩ V k

0,i = ∅ for all j 6= k. Since
C0,i is connected, and V0,i is a finite disjoint union of open subsets of C0,i,
there exists a non-empty closed complement of V0,i in C0,i. By removing the
boundary of this set, denoted by B0,i, we can write C0,i\B0,i as the union of
at least two disjoint open sets.

If there are zero or one elements in C0,i ∩O+
Ξ , then consider two distinct

points in C0,i. As X is Hausdorff, there exist disjoint neighborhoods about
these points (if there is one element of O+

Ξ in C0,i we form a neighborhood
about that point). As C0,i is connected, there exists a non-empty closed
complement of these neighborhoods in C0,i whose boundary we denote by
B0,i. Note for each C0,i, the corresponding B0,i is closed, has an empty
interior, and and is disjoint with O+

Ξ .
Inductively define Cj+1 =

⋃
i∈I Cj+1,i where Cj+1,i are the nontrivial

connected components of X\Yj, selecting for every connected component
Cj,i a set Bj,i as described above and Yj =

⋃
0≤k≤j(

⋃
i∈I O

−
Bk,i

). Define

Y =
⋃
j∈N(

⋃
i∈I O

−
Bj,i

). Note that by construction X\Y is totally discon-
nected.

We will now show that (X\Y, T |X\Y ) is an invariant subsystem of (X,T).
Assume there exists a point x ∈ X\Y such that T (x) ∈ Y . This implies
that there exists a k ∈ N such that T (x) ∈ Yk =

⋃
0≤j≤k(

⋃
i∈I O

−
Bj,i

). Thus,

there must exist an a : 0 ≤ a ≤ k and some b ∈ I such that T (x) ∈ O−Ba,b
=⋃

β∈Ba,b
(
⋃
n∈N{p ∈ X : T n(p) = β}). Thus, there must also exist a β ∈ Ba,b

and an n ∈ N such that T (x) ∈ {p ∈ X : T n(p) = β}. This implies that
T n ◦ T (x) = β which in turn implies that x ∈

⋃
n∈N{p ∈ X : T n(p) = β} and

further that x ∈ Y . From this contradiction it follows that (X\Y, T |X\Y ) is
an invariant subsystem.

We will now show that X\Y is dense in X. Given Y =
⋃
j∈N(

⋃
i∈I O

−
Bj,i

),

for all j ∈ N and i ∈ I, the set Bj,i is closed, contains no elements of O+
Ξ ,

and int(Bj,i) = ∅, so by Lemma 1 the set O−Bj,i
has an empty interior. By

De Morgan’s laws X\Y =
⋂
j∈N

(⋂
i∈I X\O

−
Bj,i

)
, and as the countable inter-

section of sets comeagre in X are comeagre, X\Y is comeagre and thereby
dense in X. �
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Proposition 3. Let (X,T ) be a topological dynamical system. If X is a
Baire space and T is countably injective, then Ξ = ∅.
Proof Let Z ⊂ X be such that int(Z) = ∅. Since T is countably injective,
then the set Y = T−1(Z) can be represented by

⋃
i∈N Yi such that Yi∩Yj = ∅

for all i 6= j and for each Yi ⊂ Y there exists a set Zi ⊂ Z such that the
restriction mapping T |Yi

: Yi → Zi is a homeomorphism. Since each Zi has
an empty interior, then so does each Yi, and as Y is the countable union
of nowhere dense sets and X is a Baire space, then Y = T−1(Z) has an
empty interior. We just showed that every set in X with empty interior has
a preimage with an empty interior and it follows that Ξ = ∅. �

Corollary 1. If (X,T ) is a topological dynamical system such that X is a
compact metric space and T is ε- expansive, then there exists a set Z ⊂
X such that Z is invariant on T, h(T ) = h(T |Z) and (Z, T |Z) is weakly
embeddable in a symbolic dynamical system.

Proof For an ε > 0, the system (X,T ) is ε-expansive. Assume that Ξ 6=
∅. By Proposition 3 T is not countably injective, thus there exists a point
x ∈ X such that card(T−1(x)) = ∞. Since X is compact there exists a
finite covering of X by open balls of radius less than ε/2. By the pigeon hole
principle, there exists an open ball, B, such that for two points p0, p1 ∈ B
then T (p0) = x = T (p1). Since d(p0, p1) < ε and O+

T (p0) = O+
T (p1) then T is

not ε-expansive. This contradiction proves that Ξ = ∅.
Since X is a compact metric space, it is Hausdorff, Baire, is totally

bounded and has finite connected components. By Theorem 2 there ex-
ists a totally disconnected and dense subsystem, (Z, T |Z). By Theorem 1
the subsystem is of equal topological entropy. Since a totally disconnected
metric space is strongly zero-dimensional, by Proposition 1 (Z, T |Z) is weakly
embeddable in a symbolic dynamical system. �

Example Consider the topological dynamical system (X, f) in which X is
the closed interval [−1, 2] of the real line and

f(x) = −x
(

1− sin π
2x

)
(1)

This function is countably injective, so by Proposition 3 the set Ξ = ∅. By
Theorem 2, there exists a set Y ⊂ X such that X\Y is totally disconnected,
dense in X, and invariant on T . By Theorem 1, h(f) = h(f |X\Y ). By Propo-
sition 2, this subsystem can be weakly embedded into a product symbolic
dynamical system.
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