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Abstract

We introduce the analogue of harmonic maps on graphs and give some
parallel results from Complex Analysis. On Cayley graphs, we compare
general harmonic maps to those induced by group homomorphisms. In
particular, we prove that the free group and abelian group on more than
one generator admit harmonic functions that are not induced by homo-
morphisms. Furthermore, we introduce the Floyd compactification of a
geodesic space, particularly that of a graph. Our goal is to compare the
Floyd boundary to other graph boundaries up to homeomorphism. In this
context, the Dirichlet Problem naturally arises. It asks for conditions for
extending a continuous function on the boundary to a harmonic map on
the entire space. The results of Anders Karlsson state that the solvability
of the Dirichlet problem depends on the size of the Floyd boundary. We
examine the connections of this result to properties of the differentials
of harmonic maps and give applications to the hyperbolic groups of M.
Gromov.

1 Introduction

The subject of harmonic maps appears in many physical contexts, ranging from
the heat equation to Electrostatics. The main motivation for studying har-
monic maps on graphs arises from problems involving the analogue of the heat
equation on graphs, particularly, the heat kernel. While our results do not
directly address the heat kernel, they do make new connections between har-
monic maps and algebraic group properties, useful in the context of Cayley
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Graphs. Harmonic maps also appear in Complex Analysis in conjunction with
the Cauchy-Riemann Equations. An expository paper by Lovasz extends a few
of these results to the complex lattice graph of the Gaussian Integers. Our re-
sults extend the discussion to include Louivelle’s theorem along and consider
graphs different from the integral lattice or four-tree.

Any discussion of Harmonic Maps merits at least a brief reference to the Dirich-
let Problem. Since harmonic maps can only be globally defined on infinite
graphs, however, we need to introduce compactification in order to properly
consider the Dirichlet Problem at Infinity. A few methods of compactification
are discussed in papers of Anders Karlsson, in particular Floyd compactifica-
tion. We have explicitly calculated the Floyd Boundary for two different Cayley
Graphs in order to observe their behavior and potential connections with group
theory. Another article summarizes two other boundary types, the Gromov and
Ideal, in addition to conditions for comparing them up to homeomorphism. We
tie harmonic maps into the discussion of boundary classes through the definition
of harmonic isometries.

1.1 Basic Definitions and Results

Given a graph G, a function f : V (G)→ C is called harmonic at vertex v if∑
w∼v f(w)− f(v) = 0.

Note that such a function is a solution of Laplace’s equation
∆f = 0, where ∆ = D − A, with D being the Degree matrix and A being

the adjancency matrix, is the combinatorial laplacian.

In the case where we also have a weights w : E(X)→ R with w(u, v) > 0, for

all u, v ∈ V (X) the condition that a map be harmonic becomes
∑
u∼v

f(u)−f(v)
w(u,v) =

0 ⇔ w(u, v) Note that this is equivalent to the laplacian simply changing to
∆f = W − I, where the matrix W is given by W (u, v) = 1

y(v)w(u,v) , when u ∼ v
and zero otherwise. where y(v) =

∑
u∼v

1
w(u,v) .

Both of these are special cases of P − harmonic maps, which are defined
as maps the operator P , which acts on a map f : V (X) → C with Pf(v) =∑
u∼v P (u, v)f(v), leaves invariant. Obviously, in the weighted case, P = W

and in the Combinatorial case these are just special cases of the weighted case
with w(u, v) = 1 for u ∼ v. Also, in both of the above cases we have that, for
any v ∈ V (X),

∑
u∼v P (u, v) = 1. For this reason, we may call P a stochastic

transition operator or Markov Chain with probabilities that are associated to a
random walk.

We say that f is a harmonic at a point v ∈ X if Pf(v) = f(v). If f is not
harmonic at the vertex v, then f has a pole at vertex v.
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Proposition 1. (Lovasz, proposition 3.1 [1, p. 5]) Every complex valued non-
constant function on a finite graph has at least two poles.

However, this is not true for infinite graphs. As a counter - example, consider
the infinite line lattice, G, with its vertices identified with Z, and define the

function f : G→ Q, f(x) :=

{
x/2 if x ≥ 0

−x/2 if x < 0
.

Then f is harmonic on the entire line and contains no poles.
The result also need not hold for harmonic maps that have their values in a

ring other than Z. In particular, the homomorphisms f : X = Cay(Cn,
{
s, s−1)

}
→

Z/nZ induce harmonic maps on X that have no poles, as we shall see in the
next section.

A further result states that

Proposition 2. (Lovasz, Proposition 3.2 [1, p.5]) For any set S0 ⊆ X, every
complex-valued function f0 → C has a unique extension to a f : X → C so that
f is harmonic on X − S0.

In [1] Lovasz gives examples of various contructions, particularly one involv-
ing random walks that easily be extended to the infinite case. It follows that,
unlike propostion 1, proposition 2 does hold for infinite graphs, provided the
starting set S0 is finite.

Another interesting analogue of this in the infinite case would be whether
each f0 defined on the a set S0 ⊆ X that is also harmonic at every node u ∈ X
with N(u) ⊂ S0 6= ∅ has a (unique) extension to X so that it is harmonic
everywhere.

Uniqueness, in fact, cannot hold for all graphs, since for any finite subset,
A of Cay(F2 : S) where S =

{
a±1, b±1

}
is the standard generating set, we

can always pick a variety of different values of f outside of S so as to keep the
function harmonic at every u ∈ A with N(u) − A 6= ∅ and all u ∈ X − A.
Also, consider the infinite path or Cay(Z : {±1}. A harmonic map on this
graph completely determined by its values at 0 and 1. Thus, a map on the set
consisting only of 0 or only of 1 does not have a unique extension to the entire
line.

1.2 Liouville’s Theorem

Another interesting result for harmonic maps in the continuous plane that fails
to hold in the discrete case of infinite graphs is Liouville’s Theorem, which claims
that any harmonic map bounded from above or below on the entire space must
be constant [7].

As a counterexample, consider the the three regular tree, and let the graph
X be the three regular graph with center z. Set f(z) = 1, and, letting z1, z2,
and z3 denote the three vertices adjancent vertices, set f(z1) = 1, f(z2) = 1/2,
and f(z3) = 3/2. Now, set all the values of f on the vertices on the branch
stemming from z1 to 1. On the branch stemming from z2, set the values of f on
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each consecutive pair of vertices equal to 1
2n , where n increases only when the

vertices move further away from the center. Finally, on the branch stemming
from z3 set the values on on each consecutive pair of vertices equal to an

2n where
an is a sequence defined iteratively by an = 2(an−1) + 1 and a1 = 3. Then
f(x) ≥ 0 for all x ∈ X, so that f is bounded from below, but f is still a
nonconstant harmonic map.

Proposition 3. For any infinite k − regular tree, i.e. the Cayley graph of the
free group Fk on k - generators, Liouville’s theorem does not hold, and we can
construct a harmonic map with a lower bound of zero using a technique similar
to the one above.

Note: this example does not contradict the Minimum principle in [9, p.5]
since this f , while being harmonic, and therefore, superharmonic, it does not
attain its minimum on X.

Also, note that Louville’s theorem does not hold if we simply attach a finite
ray perpendicular to the line, since we may choose the function whose values
are all 1 on the right side of this line, all 0 values on the perpendicular line -
segment, and the consecutive integers exceeding 1 on the left.

However, one can show that Liouville’s theorem holds for Cay(Z : ±1).

1.3 Liftings

If f : Γ→ (R,+) is a group homomorphism, and φ : Cay(Γ)/(kerf)→ (R,+),

a harmonic function, then φ lifts to another harmonic function φ̂ : Cay(Γ) →
(R,+). This follows from the fact that there is a bijection between N(γ) and
N(γ(ker f)), where N(γ) denotes the neighborhood of γ for any γ ∈ Γ.

However, the problem of finding a harmonic function φ : Cay(Γ) → (R,+)

given a harmonic map φ̂ : Cay(Γ/(kerf))→ (R,+) is virtually impossible.
The above is a special case of the much more general result:

Proposition 4. Let X̃ be a cover of the graph X. Given a a harmonic function
f : X → (R,+) we can define a lifting f̃ : X̃ → (R,+) that is harmonic.

Proof. Let p : X̃ → X be the covering map of X. Define f̃ as f̃ = f ◦ p.
We know that

∑
y∈N(x) f(y) − f(x) = 0 for all x ∈ X. Also, since p is

a covering, for each x ∈ X, y ∈ N(x) ⇒ p(y) ∈ N(p(x)) or p(y) = x and
furthermore, p(N(x)) = N(p(x)).

Therefore,∑
y∈N(x) f(p(y))− f(p(x)) =

∑
z∈N(p(x)) f(z)− f(p(x)) = 0,

so that f̃ is harmonic, as desired.

While trying to define a harmonic map from G to (R,+) given a harmonic
function on V (G̃) is generally difficult. A specific case of complex-valued func-
tions makes the problem pretty simple to solve:

Throughout, assume that the cover, p has finite, fixed index m :
|p−1(v)||N(x) ∩ p−1(u)| = m. for all u, v ∈ X, x ∈ p−1(v).
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Lemma 5. Suppose that x ∈ p−1(v) Then dx = m
|p−1(v)|dv

Proof.

dx = |N(x)|
=

∑
u∼v |Nu(x)|

=
∑
u∼v |p−1(u)|

=
∑
u∼v

m
|p−1(v)|

= m
|p−1(v)| |N(v)|

= m
|p−1(v)|dv

Proposition 6. Suppose that |p−1(v)| is finite for all v. If f̃ is a harmonic
map from X̃ into C, then f̃ descends to a map f : X → C that is harmonic.

Proof. Following the guidelines of Chung and Yau [10, p. 6], define f = (pf̃) :
V (G)→ (R,+) by the following: (pf̃)(v) =

∑
x∈p−1(v)(f(x)dxdv )

Then∑
u∼v f(u)− f(v) =

∑
u∼v(

∑
y∈p−1(u) f̃(y)f̃

dy
du

)− dv(pf̃)(v)

=
∑
y∈V (G̃) f̃(y)

dy
dp(y)

− dv(pf̃)(v)

=
∑
y∈V (G̃) f̃(y) m

|p−1(u)|dp(y)
du − dv(pf̃)(v)

=
∑
y∈V (G̃) f̃(y) m

|p−1(u)| −
∑
x∈p−1(v) f̃(x)dx

=
∑
y∈V (G̃) f̃(y)|N(y) ∩ p−1(v)| −

∑
x∈p−1(v) f̃(x)dx

=
∑
y∼x

∑
z∈p−1(v) f̃(y)−

∑
x∈p−1(v) f̃(x)dx

=
∑
x∈p−1(v)(

∑
y∼x f̃(y)− dxf̃(x))

=
∑
x∈p−1(v)(

∑
y∼x(f̃(y)− f̃(x))) = 0

,

so that, indeed f is harmonic at every v ∈ V (G).

We also have the result from Chung and Yau [10] that, provided the covering
p has index m, with the nonweighted cased corresponding to w(u, v) = 1 (and
dealing with a complex-valued map).

Theorem 7. (1) Any eigenvalue of G is also an eigenvalue of G̃
(2) An eigenvalue of the Combinatorial Laplacian G̃ corresponding to an

eigenmap with nontrivial image in G. Then is also an eigenvalue of G.
(3) If the covering is strong regular, then Spec∆(G̃) = Spec∆G, where the

set Spec∆(X) is defined as the spectrum of the Combinatorial Laplacian ∆ on
the graph X

1.4 Harmonic Maps on Cayley Graphs and Homomor-
phisms

Let R be a ring. If f : Γ → (R,+) is a homomorphism on a finitely generated
group Γ with generating set S, then it naturally induces to a function, also
denoted by f, on V (Cay(G : S)), as each element of Γ is also a vertex.
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Fact 8. If the order of every generator is greater than two, the function so
induced is harmonic on at every vertex.

Proof. By definition, the neighbors of a vertex x ∈ G of the Cayley Graph are
xs, xs−1, where s ∈ S, and since f is a homomorphism

f(xs) − f(x) + f(xs−1) − f(x) = f(s) − f(x) + f(x) − f(xs−1) − f(x) =
f(s) + f(s−1) = f(s)− f(s) = 0, so that, indeed, f is a harmonic:

∑
y∼x f(y)−

f(x) = 0.

An example where |s| ≤ 2 for some s ∈ S and a group homomorphism does
not induce a harmonic map on the Cayley graph given as follows:

Let Γ = Z/(2Z) ⊕ Z/(2Z) ⊕ Z/(2Z) and define a group homomorphism,
φ : Γ→ Z/2Z by φ(x, y, z) = z. Then φ induces a map on Cay(Γ : S) where S =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}) that is not harmonic at (0, 0, 0) since

∑
s∈S f(s) =

1 6= 0.
In fact, the condition that a homomorphism be harmonic when this is the

case is the following:∑
|s|=2 f(s) = 0.

Fact 9. Conversely if f is a harmonic function on a Cayley graph with a sym-
metric generating set S, then it is a homomorphism if

∑
s6=si,s∈S f(xs)−f(x) =

f(s) = −f(si) for all si ∈ S and all x ∈ Γ = V (G).

Proof. In this case, the fact that f is harmonic means that 0 =
∑
s∈S f(xs) −

f(x) = f(xsi)− f(x)− f(si)⇒ f(xsi) = f(x) + f(si)∀si ∈ S and x ∈ Γ.
Thus, since every γ ∈ Γ can be written as xs, for some s ∈ S, f must be a

homomorphism.

2 Harmonic Maps that are induced by Homo-
morphisms

2.1 Indtroduction

Let R be a ring such that, when viewed as a group under addition, there is an
element r ∈ R whose order is greater than 2.

Analyzing which harmonic functions on a Cayley graph are induced by group
homomorphisms to the ring can provide insight into the algebra of the group
and its generators.

I will begin with a lemma about abelian groups.

Lemma 10. If the Cayley graph of a finitely generated abelian group G2 on its
standard generators admits a harmonic map f , we can extend f to any abelian
group Gn containing G2 as a subgroup.

Proof. If |S| > 4, let C ⊂ S such that C is symmetric and |C| = 4. I will
denote by < C > the subgroup of Γ generated by ”C.” Let A =< s ∈ S −C >,
that is, the group generated by all the generators of Γ not contained in C. Since
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the group is abelian, C is normal, and thus, Γ− < C >=
∐
a∈A,a 6=1 a < C >, so

that any element γ ∈ Γ− < C > may be written as γ = ac for a ”unique” pair
a ∈ A. and c ∈< C >.

By assumption, we know that f extends to a harmonic function on the free
subgroup of Γ generated by C. I will then define f(ac) = f(c). This function
is well-defined because, due to the disjoint union of ac = a′c′ if and only if
a = a′ ⇒ c = c′.

Now we need only check that the function so defined is harmonic. Indeed,
for each γ = ac ∈ Γ− < C >,∑

s∈S f(γs)− f(γ)
=
∑
s∈S f((ac)s)− f(ac)

=
∑
s∈S f(a(cs))− f(c)

=
∑
s∈C f(cs)− f(c) +

∑
s/∈C f((as)c)− f(c)

But, f is harmonic at c so that∑
s∈C f(cs)− f(c) = 0

Thus, the sum reduces to∑
s/∈C f((as)c)− f(c).

Now, since as ∈ A is one of the coset representatives, f((as)c) = f(c), so
that this last sum vanishes.

If γ ∈< C >, then for every s ∈ S − C, f(γs) = f(γ), so that∑
s∈S f(γs)− f(γ) =

∑
s∈C f(γs)− f(γ) = 0 (by assumption)

2.2 Free Groups and Abelian Groups

To make calculations more concise, I will define n ∗ ∗q = q + q + ...(n− times)
and (−n) ∗ ∗q = −q − q − q...(n − times) for any n ∈ N. First, notice that,

if, Γ = Z, and S =
{
s, s−1

}
, it is easily seen that Cay(Z : S) then, for any

harmonic function with f(1) = 0, and f(s) = x 6= 0, we must have f(s−1) =
−f(s) = −x, f(sk) = k ∗ ∗f(s) = k ∗ ∗x(k > 0), and f(s−k) = k ∗ ∗f(s−k) =
(−k) ∗ ∗f(s) = (−k) ∗ ∗x, (k > 0) so that, indeed f is a homomorphism.

Also, the function defined by g(sx) = x ∗ ∗q (x 6= 0) and g(1) = 0, where
q ∈ R denotes the element of order infinity, satisfies the conditions for the
desired non-constant harmonic function that also defines a homomorphism and
has ker g = 1..

Lemma 11. A free group or abelian group on more than one generator admits
a map that is harmonic at every generator and defined at every element of word
length not exceeding 2.

Proof. Pick a generator a ∈ S and define a function f by f(1) = f(a2) =
0, f(a) = r. Obviously f is not a homomorphism, for f(a) + f(a) = 2 ∗ ∗r 6=
f(a2) = 0, and f is non-constant as r 6= 0. I will now extend f to a harmonic
function on the generators keeping its values the same at 1, a, and a2.

Let four of the generators be a, a−1, b, and b−1, let k = |S|, and denote
the group so generated by < S >= Γ.

Defining,
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f(s) = f(as) = f(a−1s) = f(bs) = f(b−1s) = f(s) = f(s1s2) = 0 for s 6=
a, b, a−1, or b−1, and s1, s2 are not simultaneously in the set

{
a, b, a−1, b−1

}
,

f(b−1) = f(a−1) = f(ab−1) = f(a−1b) = f(a−2) = f(a−1b−1) = 0
f(b−1a−1) = f(ba−1) = f(a−1b) = f(b−1a) = f(ab−1) = f(b−2) = 0 f(b) =
−r, f(ab) = k ∗ ∗r, f(a−1b) = (−k) ∗ ∗r, and f(b2) = (−2k) ∗ ∗r

the function is harmonic at the identity and at every generator, but defined
on words of length 2 and is symmetric, so that it is consistent with the abelian
case.

2.3 Main Theorem

Suppose Γ is an infinite finitely generated free group or abelian group with
standard symmetric generating set S. That is, S =

{
xi, x

−1
}

with absolutely

no relations on the xi or S =
{
xi, x

−1
}

with any relations so long as they include
xixj = xjxi. Let X denote the Cayley graph of Γ : S graph, X = Cay(Γ : S),
and assume that it admits a harmonic function, i.e. a function that is harmonic
at a every node, that vanishes at the identity. Also, let R be a ring such that,
when viewed as a group under addition, there is an element r ∈ R whose order
is greater than 2.

Theorem 12. If every non-constant harmonic function f : Cay(Γ : S) →
(R,+) (where R is a ring with addition operation +) with f(1) = 0 is induced
by a homomorphism f : Γ→ (R,+), then |S| = 2, so that Γ = Z. Moreover, if
the ring contains an element of infinite order, then there exists a non-constant
homomorphism g : Γ → (R,+) such that ker g = 1. Note that, according to the
above introductory section, g also induces a harmonic function on the Cayley
graph.

The last statement follows from the properties of Z shown in the last section.
We need only prove that if the Cayley graph satisfies the hypothesis of the
theorem, then |S| = 2, i.e. S =

{
s, s−1

}
.

Proof. I will proceed with a proof by contrapositive. Suppose |S| > 2. I will
extend the function introduced in Lemma 5 to the entire group in each of the
following two cases:

Case 1: The group is free (non - abelian)
I will prove that the function can be extended to the whole group by induc-

tion on the word length in Γ. That is, I will show that, if f is harmonic at every
node of a particular length n and defined on words of length n + 1, it can be
extended so that it is harmonic on every node of length n + 1 (and defined at
every node of length n+ 2). All the words of length one are just the generators
and the words of length two are just a2, a−2, b2, b−2, ab, ba, ab−1, a−1b, a−1b−1,
b−1a−1, and s2s3 (where s2, s3 are not simultaneously in the set a, b, a−1, b−1).

Note that we have already defined the values of the function f at all of
the nodes just listed such that f is harmonic at each of the generators and is
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symmetric about the generators, so that it is consistent in the case when the
generators commute. Thus, the case works for n = 1.

Now, assume that the hypothesis is true for some n ≥ 1. Then we need to
find the values of f(γ) for |γ| = n+ 2, so that f is harmonic for each node of
length n+ 1. The condition that f be harmonic at x with |x| = n+ 1 is∑

s∈S f(xs)− f(s) = k ∗ ∗f(x)
Since the group is free (not free abelian), only one of each of the values,

xs will reduce to a word of length n. For the sake of brevity, I will denote
this word by y. Moving f(y) to the right hand side of the equation we obtain∑
s 6=x−1y, s∈S f(xs) = (

∑k−1
j=1 f(sj)+f(s−1

j ))+f(s2) = (4∗∗f(x))−f(y) (where
{sj} is a rearrangement of the generators and sj 6= si). Since |y| = n, |x| = n+1,
the right hand side has definite, defined value in the ring R. As Γ is free, given
any two x, x′ ∈ Γ such that |x| = |x′| = n + 1, and s, s′ ∈ S. such that xs
does not reduce to a shorter word length, xs = x′s′ if and only if x = x′

and s = s′. Thus, in each equation, we may set f(sj) = 0 for each j, leaving
f(s2) = 4 ∗ ∗f(x)− f(y).

Since every word of length n + 2 may be written as xs where |x| = n + 1
and s ∈ S, we have just extended the domain of the function to every word of
length n + 2 so that f is harmonic at every word of the length n + 1. The
result thus follows by induction.

Case 2: The Group is Abelian
From lemma 4, it suffices to show that the extension is harmonic only for

the case when |S| = 4.
Every element of < a, b, a−1, b−1 > can be written as anbm for n ∈ Z/kZ

and m ∈ Z/wZ. The equations that f be harmonic all at nodes x = apbq with
p, q ≥ 0 and |x| = p+ q = n+ 1 are

f(an+2) + f(an+1b) + f(an+1b−1) = c1
f(an+1b) + f(anb2) = c2
...........................
f(a2bn) + f(abn+1) = cn+1

f(abn+1) + f(bn+2) + f(a−1bn+1) = cn+2,
where c1 = (4 ∗ ∗f(an+1))− f(an) ∈ R( as |an| = n),
ci = (4∗∗f(an+2−ibi−1))−f(an+1−ibi−1)−f(an+2−ibi−2) ∈ R( as |an+1−ibi−1| =

|an+2−ibi−2| = n), for n+ 1 ≥ i > 1,
and cn+2 = (4 ∗ ∗f(bn+1))− f(bn) ∈ R( since |bn| = n)
It is easily seen that, setting f(an+1b) = f(an+1b−1) = f(a−1bn+1) = 0,

so that f(an+2) = c1, the rest of the values in the system will determined
from solving simple linear equations (simple linear equations are solvable in a
ring because of the existence of additive inverses), e.g. f(anb2) = c2 so that
f(an−1b3) = c3−f(anb2) = c3−c2. Now, the other three [[systems of equations]]
for the cases when x = apbq with p ≤ 0, p ≤ 0, q ≤ 0, p ≥ 0, q ≤ 0, and p ≤
0, q ≤ 0. are obtained from the above system simply by changing the sign of
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the powers of a only, the powers of b only, and the powers of both a and b
respectively. Therefore, all three are solvable by the method just described.

Since the nodes an+2−ibi, a−(n+2−i)bi, an+2−ib−i, and a−(n+2−i)b−i, for
0 ≤ i ≤ n+ 2

are all the distinct nodes of length n+ 2, we have extended the domain of
the function to all words of length n + 2 so that words of length n + 1 are
harmonic. The result thus follows by induction.

We have therefore successfully extended the function f to the entire group
< S > so that it is harmonic everywhere and does not define a homomorphism
on Γ, contradicting the proposition’s hypothesis.

However, even if Γ = Z, then the the existence of a 1-1 homomorphism
does not hold for a ring containing all elements of finite order. In fact, in
this case, assuming that f(s) has order n, any homomorphism f must have
f(sn) = n ∗ ∗f(s) = 0. Thus, ker f = n(Z).

Also note that, if the condition that Γ be infinite were dropped, then |S| = 2
would just mean that the group was cyclic, and with this minor modification,
our result would still hold. Of course, to deal harmonic on Cayley of finite
groups that are harmonic at every node, we need to disclude subrings of C.

2.4 Consequences of the Theorem

In this section, give some basics results that directly follow and extend from
the abvoe theorem, compare our result with the work of Cheeger and Gromov,
and fit the result into a more general theory about harmonic maps on Cayley
graphs.

Corollary 13. The Cayley graph of any free group or free abelian group with
standard generating set of order exceeding 2 admits a function that is harmonic
at every node.

For any harmonic function f : X → (R,+), define
kerf = {x ∈ X, f(x) = 0} . Note that, unlike the kernel in group theory, we

can have kerf = ∅

Corollary 14. Let R be a ring containing no element of finite order. The
Cayley graph X of any free of group or group abelian group on its standard
generators admits a non-constant harmonic function f such that supp h = Γ =
V (X), or equivalently kerf = ∅

The proof again uses induction on the word length in Γ to construct a non-
constant function on the entire graph, all of whose values are nonzero.

Note that Cheeger’s and Gromov’s result that the Cayley graph of an amenable
group admits no non-constant Dirichlet harmonic functions [6, p.1], so that

Fact 15. If Cay(Γ : S) admits a non-constant harmonc function that is l2 -
summable, then Γ cannot be amenable.
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Our result does not contradict the fact that abelian groups are amenable
because the harmonic maps we are considering are not the same as Dirichlet
harmonic maps on free groups and free abelian groups. Since every Dirichlet
harmonic map is also a harmonic map, we have the following:

Fact 16. Every harmonic map on the Cayley Graph of an amenable group is
has a differential that is not l2 - summable.

In fact, Elek and Tardos [6] have extended the result about Cayley graphs
of amenable groups to general, roughly transitive, amenable graphs.

Corollary 17. The harmonic maps defined on the abelian groups have differ-
entials that are not l2 - summable.

2.5 Generalized Results

We can divide the harmonic maps on a given Cayley graph into three sets H1, H2

and H3 where H1 denotes the ones induced by homomorphisms from Γ to (R,+)
H2 denotes the set of harmonic maps preserving group identities, f(1) = 0, that
are not induced by homomorhisms, and H3 denotes the set of harmonic maps
with f(1) 6= 0. Now since, for any harmonic map, u ∈ H3, u − u(1) is also
harmonic on the graph, so that u− u(1) ∈ H1 or H2. For this reason, it suffices
only to consider the sets H1 and H2 since the other harmonic maps differe from
them only by a constant.

Since every homomorphism induces a harmonic map on a Cayley graph of
group all of whose elements have order exceeding 2, H1 is just the set of all
homomorphisms from Γ to (R,+).

The above theorem can thus be restated as
For a free group or infinite abelian group on its standard symmetric genera-

tors |H2| = 0, if and only if Γ ' Z.
With minor modifications modifications to include finite graphs, we have

Fact 18. For an abelian group on its standard symmetric generators, |H2| = 0
if and only if Γ is cyclic.

A counterexample for non-abelian groups would be the Dihedral Group, D2n,
which has |H2| = 0, but is obviously non-cyclic.

Lemma 19. The only groups whose cayley graph have the form of a series
of polygons contained inside of a larger, similar one and joined symmetrically
to each other pairwise at each vertex are, up to isomorphism, D2n,Z/nZ ⊕
Z/mZ, and < x, r|xn = r2 = 1, Ri(x, r), 0 < m < n >, where Ri defines the
relations on the two generators.

Proof. I will proceed with a proof by contrapositive. Note: obviously, |Γ| = mn.
If Γ is not isomorphic to any of the groups listed above, then there is only

one possibility: Γis generated by two or more distinct elements besides x. I will
show that in each of the following cases, the the corresponding Cayley graph is
not Cycn × 2 :

11



Assume that S contains two or more distinct elements in addition to x. Then,
if 1 ∈ Γ = V (X) denotes the identity, deg 1 > 3, so that the graph cannot be
the one desired since every vertex on the inner most polygon has degree 3.

Conjecture: Let R = Z/nZ, and suppose Γ with the order of the group
satisfying n < |Γ| <∞ contians a cyclic subgroup of order n. Let HCn) denote
the harmonic maps on X = Cay(Γ : S) (where S is a standard, symmetric
generating set of minimal order) such that the restriction of any f ∈ HCn

to
Cn is a homomorphism. Then |H2 ∩HCn

| = 0 if and only if there is a s ∈ Γ for
which < x, s >= Γ, where < x >= Cn.

Proof: If Γ has to be generated by more than two elements, then deg1 > 3,
so that we can assign an element other than 0 in Z/nZ to a vertex neighboring
1 while keeping the function harmonic at 1. Furthermore, we we can extend the
function defined on Cn to the whole graph so that it is harmonic since the graph
must have more than 2n vertices. To ensure that it is not a homomorphism,
we merely need to set f(r) = 1 and f(xr) 6= 2; we may assume that f(x) = 1
withouth loss of generality.

We also know that for any free group and free abelian group on more than
one standard generator and for a ring containing an element of infinite additive
order, |H2| =∞.

What does the size of |H2| tell us about the structure of the group or its
standard generators? In particular, if R contains an element of infinite order
and |H2| < ∞, then we know that Γ cannot be free or free abelian, but what
else can we deduce about Γ?

3 Floyd Compactification

3.1 Definitions

Another application of harmonic functions involves studying group cohomology
and exploring the Dirichlet Problem using compactification [2, p. 138].

Consider a geodesic space (X, d), where X is a graph and d is the path-
metric induced from identifying each edge with the unit interval and gluing
them together at the edges. Fixing a base point or center, z ∈ X we also define
|x| = d(z, x), x ∈ X and |A| = infx∈A d(z, x), A ⊆ X

Now, given a function
F : N→ R+, such that∑
r |F (r)| <∞

called a Floyd Admissible Function, we may define the Floyd Metric, dF ,
with the following equations:

(1) If x ∼ y, then dF (x, y) = F (|x, y|)
(2) Otherwise, let α be a path from x to y (permissible because X is a

geodesic space) consisting of the vertices xi, with xi and xi+1 adjacent. Setting
Lα =

∑
i dF (xi, xi+1), we can define dF (x, y) = infα Lα where this infimum is

taken over all paths α from x to y.
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This new metric has a finite diameter on the new metric space XF , so that
the fact that X̄F , the completion of XF as a metric (i.e. the union of XF with
all of its limit points) does not come as a big surprise. We are now in a position
to define the ”Floyd Boundary” as a ∂XF = X̄F −XF .

Note that, in general, the Floyd Compactification depends on the Floyd
Admissible function F, and that this way defining the boundary is in now way
unique. Other boundaries include the ideal, Gromov, and hyperbolic.

3.2 Examples of the Floyd Boundary

Below, we show that the Cayley graph of two fairly different groups have the
Cantor set as a Floyd Boundary. We then introduce the relationship of the
order of this boudnary type to amenability and formulate questions using H2.

Example 20. Take X to be the 4 - regular tree and let F (r) = 1/(2r+1),
and define the Floyd metric as above. Notice that, under the Floyd Metric, the
graph has a diameter bounded by 1. Then the only limit points that XF does not
contain are the endpoints of the geodesic rays originating at the center. Notice
how these geodesic rays define Cauchy sequences because 1/(2r+1) is summable.
It follows that the Floyd Boundary is, in this case, the 4-Cantor set, obtained
by continually chopping up the interval [0, 1] into 4 different pieces.

Example 21. Similarly, keeping the same Floyd admissible function, but taking
F to be the Cayley graph of the group Z/2 ∗ Z/3 =< s, t|s2 = t3 = 1 > .. Then,
again, the graph has a diameter bounded by 1, and the limit points consist of
the endpoints of the geodesic rays, which also happen to be geodesic rays on the
3 - regular tree, so that the limit points not contained in XF is the 3- Cantor
set, obtained again by continually chopping up the unit interval [0, 1], but this
time into 3 different pieces.

If the metric were different (not obtained from a Floyd Compactification),
so that some the new geodesics trace the lines on the triangular subgraphs not
traced in the geodesics obtained from the Floyd metric in a zig-zag way that
consecutively up and then down the tree-like structure of this graph. Assuming
that the geodesics still include the geodesics on the 3-regular tree, the boundary
just consists of the 3-Cantor set plus another two points.

From [5, p. 10] the Floyd boundary of a finitely generated amenable group
is trivial, i.e. contains no more than 2 points. Consequently, we an determine if
a group is non-amenable by analyzing its Floyd Boundary. For example, since
the Cantor set is uncountably infinite, it follows that both the free product
Z/2 ∗ Z/3 and the free group F2 are non-amenable. In fact, any free group Fn
is non-amenable since it is non-commutative.

Groups that have trivial Floyd boundaries of 0 or 2 points are in general easy
to come up with: Any finite group has an empty set as a the Floyd Boundary
and Z has its two points at infinity as the Floyd boundary. However, groups
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with Floyd boundary consisting of only one point are a little more interest-
ing, and examples include the fundamental group of compact negatively curved
manifolds.

An interesting question arising from studying Floyd boundaries is what does
H2 tell us about the Floyd Boundary? In fact, since Karlsson already states
that |∂XF | = 2⇒ Γ = Z we have the following:
|H2| = 0 if and only if |∂XF | = 2.

3.3 The Dirichlet Problem

Generally, the Dirichlet problem involves finding a harmonic function on the
completion X̄F of the geodesic space XF given a Floyd Compactification F and
a continuous function f defined on the boundary ∂XF [2, p. 139].

The Dirichlet problem can also be considered with respect to a stochastic
transition operator, P, where harmonic functions become invariants of P, or
rather, solutions to the Laplacian ∆ = P − I, instead of ∆ = D − A, as in the
case just described. Not surprisingly, this problem has applications to random
walks and is closely interrelated to Markov chains.

An important result about the solvability of the Dirichlet Problem and Har-
monic functions on a Cayley graph X = Cay(Γ, S) for |S| <∞ is given in the
following main theorem from [2].

Theorem 22. Karlsson [2, p. 138] If the the geodesic space X admits an
infinite Floyd Boundary, i.e. there is a compactification F such that |∂XF | =
∞, then the Dirichlet problem is solvable with respect to ∂XF . On the other
hand, if every Floyd compactification, F we have |∂FX| < ∞, then for every
non-constant harmonic function h,

∑
r>0 sup|x|≥|dh(x)| =∞, where x denotes

an edge of X viewed as a subset of the graph and with |x| defined from the
induced path metric in the section above describing Floyd compactification.

Note that if Γ is amenable, then, according to [6], dh cannot even be l2 -
summable, for any nonconstant harmonic map h, on the Cayley Graph, so that
this also satisfies the last equation of the above theorem, i.e.

Fact 23. Γ amenable ⇒
∑
r>0 sup|x|≥|dh(x)| =∞,

3.4 Group Cohomology

Let L1C0 denote functions on the edges whose suprema are summable, i.e.
f : E(X)→ R ∈ L1C0, if and only if

∑
r>0 sup|x|≥r|f(x)| <∞.

Now, let C0(XF ) denote the space of all continuous functions on the ver-
tices of XF with respect to the Floyd Metric. Then I will define L1C0 ={
h ∈ C0(XF ), dh ∈ L1C0

}
.

and the first Cohomology group, H1(XF : L1C0), as H1(Γ, L1C0) '{
g : Γ→ R, dg ∈ L1C0)

}
/(R + L1C0).

Note that the elements of H1 are just cosets of (R + L1C0) with represen-
tatives consisting of functions on the edges of XF that cannot be broken down
into a continuous function (with respect to Floyd) on the edges plus a constant.
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Here, number may refer to both countably infinite or uncountably infinite,
and the bound holds in the infinite case provided |∂XF | and |H1| are not
countable and uncountable, respectively.

The following result relates the first cohomology group just defined to the
Floyd Boundary.

Theorem 24. (Karlsson [2, p. 143]) The number of points in the Floyd Bound-
ary is bounded by the number of elements in H1, i.e. |∂XF | ≤ |H1|.”

A further result gives the better result of equality between the order of a
similar group and the number of elements in the Floyd Boundary:

Theorem 25. (Karlsson [2, p.143]) |∂XF | = 1 + dimH̄1(Γ, Cc)

Here, Cc = {h : E(X)→ R, |supp h| <∞}
(where supp h = {x ∈ E(X), h(x) 6= 0}),
so that Cc = {h ∈ C0(XF ), dh ∈ Cc} ,
and H̄1 '

{
g : E(XF )⇒ R, dg ∈ L1C0)

}
/(R + Cc).

From the above results about the Floyd boundary, we may thus conclude
the following:

Fact 26. (1) For Γ = Z, dim H
1
(Γ, Cc) = 1

(2) For Γ the fundamental group of any negatively curved manifold, e.g. a

surface, dim H
1
(Γ, Cc) = 0

(3) For Γ = Fn the free group on n generators, dim H
1
(Γ, Cc) =∞.

An intersting question that arises is to impose conditions, e.g. properties
of harmonic maps on the Cayley Graph of, Γ with respect to its standard gen-

erating set in order to determine whether the size of H
1
(Γ, Cc). In fact, from

the above results, we can conclude that |H2| = 0 ⇔ dimH
1
(Γ, Cc) = 1. Now,

in order to further consider the effect of the set H2 on the set H
1
(Γ, Cc), it

makes sense to compare homomorphisms to continous functions plus a constant
and harmonic maps not induced by homomorphisms to non-continous functions.
Note that continuity is defined in terms of the Floyd metric. In this case, re-
member that we are only considering maps whose support is finite.

4 Comparing Boundaries up to Homeomorphism

4.1 Floyd, Ideal and Gromov Boundaries

Throughout the following, let
∂XF : Floyd boundary with respect to Floyd Admissible Function F

∂XG : Gromov boundary

∂XI : Ideal boundary
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All three of these boundaries have topologies either iduced by or defined
using the original metric d, e.g. the path-metric. We also define a length space
metric as a rectifabley connected metric space for which d(x, y) = infγ lend(γ)
where this infimum is taken over all rectifiable paths γ : [0, T ] → Xd with
γ(0) = x and γ(T ) = y parametrized by arc length under the d metric.

Properties of Metric and Geodesic Spaces
Before giving the comparison results, I will define δ hyperbolic and CAT (0)

space and then use these to define the ideal and Gromov boundaries (we have
already defined the Floyd boundary in the above section).

In order to define a CAT (0) space, I will define the notion of a triangle map,
f : T −R2, where T is a geodesic triangle. A triangle map has the property that
it preserves the length of the sides of T and the restriction of f to each geodesic
side in T is an an isometry. Now, a CAT (0) is a geodesic space for which every
triangle map has d(u, v) ≤ |f(u)− f(v)|, for all u, v ∈ T.

To define δ−hyperbolic I first need to define the Gromov inner product with
respect to a vertex p ∈ X :
〈x, y〉p = (d(x, p) + d(p, y)− d(x, y))/2, x, y ∈ X.
We then say that the metric space X is δ − hyperbolic if
〈x, z〉p ≥ min(〈x, y〉p , ) 〈y, z〉p − δ
which, unlike the triangle inequality, gives a lower bound to the distance

between x and z.
Buckely and Kokendoff also introduce the notion of a δ - thin triangle, which

simply means that, letting T1, T2, and T3 be the sides of a triangle, for any
u ∈ T1 and v ∈ T2 ∪ T3, we have d(u, v) ≤ δ. They also note that X is δ −
hyperbolic ⇒ X has 3δ − thin triangles and X having δ − thin tringles ⇒
X is 3δ − hyperbolic.

Ideal Boundary :
To define, the ideal boundary, we first need to introduce the notion of the

Hausdorff distance, dH of a given metric d. This metric assigns distance between
two geodesic rays given via the equation,

dH = max(supx∈γdistd(x, ν), supy∈νdistd(x, γ)).
Two rays, γ, ν ∈ ∂X = GR(X), where GR(X) denotes the set of all geodesic

rays parametrized by d− arclength, are equivalent if and only if dH(γ, ν) <∞,
or, equivalenlty, suptd(γ(t), ν(t)) < ∞. The ideal Boundary is then defined
simply as the free group

To the space XI = X ∪ ∂XI , we attach what is called the cone topology,
provided that the space is both complete and CAT(0). Most basically, the
cone topology is defined using Xr = ∂XI ∪ (X − Bd(c, r)), where Bd(c, r) is
a ball of radius r from a point c ∈ XI and the projection map pr : Xr →
Sd(c, r), ( where Sd(c, r) denotes the sphere of radius r centered at c ∈ X,
or, Sd(c, r) = ∂Bd(c, r)) defined by pr(x) = γx(r), where γx(r) is the unique
geodesic (parametrized by arclength under the d - metric) joining c to x. The
topology consists of all sets U(a, r, s), with r, s > 0 defined as x ∈ Xr|d(pr(x), pr(a)) < s
with the local base a ∈ ∂XI .
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Gromov Boundary :
Let <,> denote the Gromov metric with respect to an arbitrary base point.
A Gromov sequence is in some sense the opposite of a Cauchy sequence in

the sense that γ = (γi) ∈ X is Gromov if and only if < γi, γj >→∞ as i, j →∞.
Now, we can readily define the Gromov boundary, as the set of all equivalence

classes of sequences γ = (γi) ∈ G under the equivalence relation γ ∼ η ⇔
there is a set of k + 1 sequences γ = x0, η = xk0 , andxk−1Exk where

zEw if and only if ⇔ lim infi,j→∞ < wi, zj >=∞. The set of equivalence
classes of such geodesic rays, ∂XG is called the Gromov boundary.

Using this boundary, we can extend the Gromov metric to all of ¡math¿
∂XG using < a, b >= inf lim infi,j→∞ < xi, yj > for [x] = a and [y] = b, where
a, b ∈ ∂XG

and inf lim infi,j→∞ < xi, yj > for [x] = a where a ∈ ∂XG, and b ∈ X.
Now, the metric, or rather, pseudo-metric used in comparing the boundary

is defined with respect to a number ε > 0 as
ρε(a, b) = exp(−ε < a, b >) δε(a, b) = inf(

∑n
j=1 ρε(aj−1, aj)), a, b ∈ ∂XG,

where this infimum is taken over all finite sequences starting at a and ending at
b.

Now, if X is δ − Hyperbolic and εδ ≤ 5, then dε is in fact a real metric.
From [4, p. 8], the following relationships among the boundaries occur:

Theorem 27. (Kokendoff and Buckley) Assume that the space (graph) X is
δ −Hyperbolic under the l −metric and nonempty. Also, let ε and δ be such
that εδ ≤ 1

5
Then
(1) Since there is a K > 0 and a ε0(δ) > 0 for which F (t)exp(ε0t) ≥ K,

∂XG ' ∂XF under the dε dometric. Furthermore, if X is geodesic, complete
and CAT (0) under the l −metric, then ∂XI ' ∂XF .

(2) If X is complete and CAT (0), then ∂XI ' ∂XG under the cone topology
τC and the Gromov dε metric respectively.

A result about comparing Floyd and Hyperbolic Boundaries comes from [5,
p. 8] and states that if the geodesic space is the Cayley graph of a finitely
generated word hyperbolic group, then ∂XF for F (r) = (r+1)−2 coincides with
the standard Hyperbolic boundary. Note: Karlsson also compares the Floyd
boundary of certain groups to a particular limit set: |Ls| ≤ |∂XF | = |∂Γ|

where Γ is the fundamental group a hyperbolic 3-manifold and Ls is the
limit set of this manifold.

The Poisson Boundary
The Poisson boundary also merits comparison, particularly because of its

applications in solving the Dirichlet Problem. To define the Poisson boundary,
I first need to defined the notion of a Markov Chain induced by a probability
measure µ, ergodic components of Γ, the time Shift T, the path space, and also
the µ- boundary, respectively.

Given, a probability measure µ on a group, the induced random walk is
defined as
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p(x, y) = µ(x−1y). Note that p(hx, hy) = p(x, y).
First, we need to introudce Kaimanovich’s conditions (CP), (CS), and (CG):
(CP) or ”Projectivity” Any two sequences remaining a bounded distance

from each other must converge to one and the same boundary point. Equiva-
lently, for a group G, if the sequence gn ∈ G has gn → g ∈ ∂G then gnx → g
for all x ∈ G.

(CS) ”Separated by strips” For any two γ, η ∈ ∂Γ, S(γ, η) be the strip
bounded by the geodesics rays eminating from infinity and converging to γ and
η respectively. Then the condition states that for any three points, xi ∈ ∂X,
there are neighborhoods Ui about each such that S(U1, U2) ∩ U3 = ∅.

(CG) d is left-invariant, i.e. d(x, y) = d(gx, gy) for all g, h ∈ Γ. and the
gauge is temperate. According to Kaimonich, a gauge is a sequence of sets
Gk, (k ≥ 1) that approximate the entire group. Such a gauge is temperate if
supk

1
k log|Gk| <∞.

Relating these to Floyd Boundaries, in [5, p.9] the author proves the follow-
ing:

Proposition 28. (Karlsson) If ∂Γ as a Floyd type contains at least three points,
then Γ satisfies (CP),(CS), and (CG).

4.2 Harmonic Isometries

Studying these properties about metric and geodesic spaces raises the question:
When is a harmonic map on a subset of X an isometry, and what does this
say about the geometry of X, properties of the metric space, or the algebraic
structure of the group of which X is Cayley Graph.

From [2, p.9], a proposition claims that ∂Γ, of a group Γ under Floyd Com-
pactification is a geodesic space, so one would expect that harmonic isometries
be related to the Dirichlet Problem.

By definition an isometry into R has the following property: d(x, y) = |f(x)−
f(y)|, where d denotes the metric on the graph. As we have seen above, this
metric could be the induced path metric, the Floyd metric, or the Gromov
metric.

In any case, the condition that this isometry be harmonic is
∑
y∼x f(y) −

f(x) =
∑
y∼x sgnf (y, x)d(y, x) = 0, where sgnf (y, x) = sgn(f(y)− f(x)). Now,

in the case that d is the induced path metric, we have have the somewhat
conciser requirement that

∑
y∼x sgnf (y, x) = 0.

I will call a map that is simultaneously a harmonic and isometric a harmonic
isometry

The following two results show that harmonic isometries are related to the
parity of the degree of the vertices of a graph:

Proposition 29. Let X be a graph containing a vertex of odd degree and let d
denote the induced path metric. Then X does not admit any harmonic isome-
tries to R.
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Proof. Let v ∈ X be the vertex of odd degree and let f denote any isom-
etry from X to R. Then for any y ∈ N(v), |f(y) − f(v)| = 1. Therefore,∑
y∈N(v) sgn d(y, v) will only be zero if there are an equal number of +1 s and

−1 s. Since |N(v)| is odd, this is not possible.

Theorem 30. Let k be an even integer. Then every k - regular graph admits a
harmonic isometry under the induced path metric.

Proof. We can easily define an isometry on a k - regular graph simply by sending
each vertex to its distance from a point chosen to be the center (all of these values
will be in Z. Denote this isometry by f.

Proceeding by induction on the distance from the center, we see that we can
easily assure that f is harmonic is the sphere of radius one around the center
z by negating half of the values. Since the center was taken as the starting
point, this map indeeds remains an isometry. Now, assume the function can
be extended to a sphere of radius m ≥ 1 about the center such that, when
restricted to this sphere, it is an isometry and also harmonic at every vertex
whose neighborhood lies within the sphere. The sphere of radius m + 1 can
be formed by taking the union of all the neighbors of vertices in Sm whose
neighbors lay outside of Sm. We need only to make sure that f remain an
isometry at these vertices that that its restriction to Sm+1 is an isomety. Now,
let v ∈ Sm such that N(v) ∈ Sm+1 − Sm. For a regular graph this is actually
just the set of vertices for which d(z, v) = m, where z is the center of the graph.
Since the restriction of f to Sm is an isometry, the values at the neighbors N(v)
differ from f(v) 1. Since the graph is regular of even degree, there must be
as many neighbors within Sm as there are in Sm+1 − Sm. Therefore, we may
choose each value f(w) of the neighbors w ∈ Sm+1−Sm so that they correspond
to a w∗ ∈ Sm and satisfy f(w) + f(w∗) − 2f(v) = 0. Since each neighbor in
Sm+1 − Sm has distance m + 1 from the center, and each other neighbor has
distance m − 1 from the center (since the graph is regular) it follows that this
map remains an isometry at vertices lying at a distance of m+1 from the center
is harmonic for all vertices lying at a distance of m from the center. The result
thus follows by induction.

As an immediate consequence of these two theorems applied to Cayley
Graphs, we have that

Fact 31. (1) The cayley graph of Fk on its standard symmetry generators admits
a harmonic isometry, provided that k is even.

(2) If the Cayley graph X admits a harmonic isometry, then |S| must be
divisible by 4.

(3) If the Cayley graph X admits a harmonic isometry and |∂XF | <∞, then
|∂XF | must be even.
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5 Future Outlook

In the above paper, we have only considered harmonic maps on unweighted
Cayley Graphs. A natural way to continue our studies would be to extend some
of our results to Weighted Graphs, while tying Group Theory and perhaps in-
cluding a thorough discussion of the Heat Kernel. More connections between
different boundaries, harmonic maps, and group theory may also be considered.
However, physics motivates another way of extending the specific theory of har-
monic maps. Since many physical equations are given as differential equations,
it seems natural to consider what other differential operators, besides the Lapla-
cian, can be defined on infinite Cayley graphs. Connections with Group Theory
and Compactification might then arise.
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