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Harmonic Maps
Basic Results

What Is a Harmonic Map?

A harmonic map is a map f with ∆f = 0

∆ is the Laplacian

Two types of ∆:
Laplacian with respect to an operator
Combinatorial Laplacian
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Harmonic Maps
Basic Results

Harmonic Maps with Respect to an Operator

X a Graph
P = p(x , y), x , y ∈ X : stochastic transition operator

P(h)(x) =
∑

y∈X p(x , y)h(y)

Laplacian with respect to P: ∆ = P − I
∆h = 0⇒ Ph = h iff h is P - harmonic
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Harmonic Maps on Graphs

Combinatorial Laplacian on a Graph: ∆ = D − A

f on a graph G is harmonic at v ∈ V (G) if ∆f (v) = 0.

A point where a function is not harmonic is a pole
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Harmonic Maps
Basic Results

The Number of Poles on Finite and Infinite Graphs

Every nonconstant, complex-valued harmonic function on
a finite graph has at least two poles (Lovasz).

Not true for inifinite graphs, e.g. Cay(Z : {±1})
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Harmonic Maps
Basic Results

Homomorphism and Cayley Graphs

Γ a group generated by the finite set S
R a ring
f : Γ→ (R,+) group homomorphism.
X = Cay(Γ : S)

f naturally defines an R-valued harmonic function on V (X )
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Cayley Graphs of Free Groups and Free Abelian Groups

Preliminaries

Γ a free group or free abelian group with natural finite
symmetric generating set S.
X = Cay(Γ : S)

R a ring with an element of additive order exceeding 2.
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Cayley Graphs of Free Groups and Free Abelian Groups

Harmonic Functions that are Homomorphisms

Theorem
Let Γ be a free group or free abelian group. If every
non-constant harmonic function f : Cay(Γ : S)→ (R,+) with
f (1) = 0 also defines a homomorphism f : Γ→ (R,+), then
|S| = 2, so that Γ = Z. Moreover, if the ring contains an element
of infinite order, then there exists a non-constant
monomorphism g : Γ→ (R,+).
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Cayley Graphs of Free Groups and Free Abelian Groups

Corollary

Theorem
The Cayley graph of any free group or free abelian group not
equal to Z on its standard generators admits a nonconstant
harmonic function that is not a homomorphism.
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The Dirichlet Problem
Floyd Compactification
The Dirichlet Problem and Group Cohomology

What is the Dirichlet Problem?

Extend a continous function on ∂X to X so that it is harmonic.

In the Following,

X = Cay(Γ,S), |Γ| =∞ & |S| <∞.
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The Floyd Metric

d = induced path metric, z = the center of graph
|x | = d(z, x), x ∈ X and |A| = infx∈A, d(z, x), A ⊆ X

F : N→ R+ with
∑

r |F (r)| <∞, dF = Floyd Metric
dF (x , y) = F (| {x , y} |) when x ∼ y
(x , y) /∈ E(X ):
α = path from x to y , Lα =

∑
i dF (xi , xi+1), (xi , xi+1) ∈ α,

dF (x , y) = infα Lα

XF completion of XF and ∂XF = XF − XF Floyd Boundary
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Examples of the Floyd Boundary

4-Regular Tree and F (r) = 1/(2r+1)

∂XF = 4-Cantor Set: continually chop up [0,1] into 4 pieces

Cayley Graph of Z/2 ∗ Z/3 =< s, t |s2 = t3 = 1 > and
same F (r)

∂XF = 3-Cantor Set: continually chop up [0,1] into 3 pieces
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Solvability of the Dirichlet Problem

Theorem
(Karlsson)
If |∂XF | =∞, then the Dirichlet problem is solvable with respect
to ∂XF . However, if |∂XF | <∞ then for every nonconstant
harmonic function, h on XF ,

∑
r>0 sup|x |≥r |dh(x)| =∞

x an edge

dh(x) = h(xs)− h(x)
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Group Cohomology

Theorem
(Karlsson)
|∂XF | ≤ 1 + dim H

1
(Γ,L1C0)

f : E(XF )→ R ∈ L1C0 iff
∑

r>0 sup|x |≥r |f (x)| <∞

L1C0 =
{

h ∈ C0(XF ), dh ∈ L1C0
}

H
1
(Γ,L1C0) '

{
g : Γ→ R, dg ∈ L1C0

}
/(R + L1C0)
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Summary

Harmonic Functions on Cayley graphs are related to
homomorphisms and group structure

Using compactification, the Dirichlet problem relates to
summability of the differential of harmonic functions

Differentials of functions can define a cohomology group
and estimate the cardinality of the Floyd Boundary
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Outlook

What else can harmonic functions on Cayley graphs tell us
about the algebraic structure of groups?

How does the Dirichlet Problem’s relationship to
cohomology change for P - harmonic functions?
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For Further Reading I

Anders Karlsson
Harmonic Functions on Homogeneous Graphs
Discrete Mathematics and Theoretical Computer Science
AC(2003), 137-144.

Wolfgang Woess
Dirichlet problem at infinity for harmonic functions on
graphs
31C12, 60J15 (1991).

Lovasz Laszlo
Discrete Analytic Functions: An Exposition
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