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Abstract

This paper discusses the box product also known as the Cartesian
product, and its relationship to covering maps and the spectrum of graphs.
Further we define the box exponential and discuss its covering maps. Ad-
ditionally we consider coverings and isospectrality from a geometric as
well as algebraic point of view.

1 Introduction

A graph X is a set of vertices V(X) = {v1,...vn} and the set of edge E(G)
such that (v;,v;) € E(X), is an edge connecting vertices v; and v;. In this
paper we consider edges to be undirected (equivalently bidirected), that is, if
(‘U,’,’Uj) € E(X), then (vj,vi) (S W)

The box product, frequently called the Cartesian product, is a commonly studied
operation of graphs.

Definition 1. If X and Y are graphs then the box product, XOY, is the graph
with

V(XOY) = {[os, 53] | 2 € V(X),y; € V(Y)} and

BOXO) = (s lron) | .10) € E(¥)} U {((zs, 3], lon, 05]) | (2, 2) €
E(X)}.

In XOY there are |V(Y)| copies of X and |V(X)| copies of Y, labeled X;, i =
1,...mand Y}, j=1,...ngiving |V(XOY)| = |V(X)|[V(Y)|- Further, given a
vertex [z;,ys], then deg([z,y:]) = deg(z:) +deg(y;). In general the box product
gives geometrically interesting graphs, and is used to produce several useful fam-
ilies of graphs. For example, grids (P,0P,,), toroidal meshes (C,0Cy,), cylin-
drical meshes (C,0P,,), and cubes (P>0...0P;) are all box product graphs.
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Many properties including crossing numbers, cutwidths, and colorings have been
studied on these examples and on other product graphs.

After considering the box product, we introduce the box exponential, motivated
by the ideas of set theory and category theory. In set theory, Cantor discovered
that there was a natural exponential of sets, associated with the product of sets.
Similarly, in graph theory, there is a categorical product of graphs, with an as-
sociated natural exponentiation of graphs [6]. Simlarly, though surprisingly, the
box product also has an associated exponential, though little has been studied
about it, except for a brief discussion by Doctermann, where he calls it the in-
ternal homomorphism [3]. Here we consider the box exponential and its relation
to covering maps.

The idea of covering maps is a commonly studied concept in topology which
has been applied to graph theory. Graph covering maps are important because
they provide a way of relating the spectrum of graphs, which proves useful in
considering families of large graphs. Additionally covering maps are often de-
scribed in terms of groups, with the associated group being called the Galois
group. This approach has been studied by Stark and others [11]. Skogman [10]
gave a construction for the Galois covers of a graph which provides some of the
inspiration for the treatment of coverings in this paper. However we also seek
to add a geometrical perpective on covering maps. For this reason, it is natural
to consider covering maps of box product graphs, as the two ideas combine to
produce geometrically interesting graphs and both serve as a way of producing
and relating useful families of large graphs.

As noted above covering maps relate the spectrum of graphs, since it is well
known that if Y covers X then the characteristic polynomial of X divides that
of Y. Likewise it is known that the spectrum of a graph XY is all sums X;+ p;
where ); is an eigenvalue of X and p; is an eigenvalue of Y [1]. Also it has
previously been shown algebraically that box products preserve isospectrality,
however, we present an alternative geometric prove, adding further motivation
for the geometric view of box products and covering maps.

2 Isospectrality

We say two graphs are isospectral when their adjacency matrices have the same
characteristic polynomial. We denote this by X = X'.

It is well known that two graphs are isospectral if and only if they have the
same number of closed paths of length k, for all k£ € N (see Godsil [4] for one
proof).

Theorem 1. If X = X' and Y = Y’ then XOY = X'0Y".

Proof. Since X = X’ and Y = Y’, there is a bijection between the paths of




length n in X and the paths of length n in X’ and between the paths of length
m in Y and the paths of length m in Y”.

Consider a path of length k£ in XOY. Such a path is composed of paths contained
in the X; and Y; subgraphs. Let 7; denote a path in some X; and 7; a path in
some Yj. Then a path of length k in XY is of the form v1, 71,72, 72, - - - ¥rs -
Since each -; remains in the same X;, take oy to be the path in X isomorphic
to ;. Likewise take §3; to be the path in Y isomorphic to 7; € Y; Then the path
aq,...0p is a path of legnth n in X and likewise (31, ..., 3, is a path of length
m in Y where k = n+m. Then we can find a path of lenth n in X’ of the form
o),...al. where o is the path corresponding to o; given by te bijection of paths
in X and X’. Likewise there is a path 8i,..., 3. of length m in Y’. Therefore
we can create a path of length n in X'0Y” of the form 7, 7},72, 7%, - - - Y 1 bY
inserting the paths 7; after each +;. Hence for a given closed path of length n
in XOY there is a corresponding path of length n in X’0OY”. Similarly given a
path in X'{1Y" we could find the corresponding path in X[1Y. Hence there is a
bijection between closed paths of length n in XOY and closed paths of length
n in X’0Y’. Therefore if X & X’ and Y 2 Y’, then XOY & X'OY. O

3 Coverings

Definition 2. Given graphs X andY, then Y L xisa morphism if for every
(a,b) € E(Y) there is an edge (f(a), f(b)) € E(X).

Definition 3. A morphismY L xisa covering if it is locally bijective. That
is, if v € V(Y) is adjacent to the vertices v,. .., vy € V(Y), then f(v) € V(X)
is adjacent to the vertices f(v1),..., f(vm) € V(X).

We describe a covering as n sheeted if for every @ € X there are n vertices, a*
such that f~1(a) = {a® |s = 1,...,n}. Note that the definition of a covering
requires deg(a) = deg(a®).

When X is connected it follows that |V (X)| divides |V (Y)|.

3.1 Examples

Let @,, denote the n-dimensional cube. Then the vertices of @, are all ordered n-
tuples and the edges connect vertices whose n-tuples differ in exactly one place.
Note that @, is the edge (0,1), Q2 = @,0Q1 and in general @, = Q@,UQ%
where n = m+k. The degree of every vertex in Q,, is n, and @, has 2" vertices.

Observe that Q3 covers K4 by taking the top square (denoted by those tuples
with a 1 in the first entry) rotating it by 180 degrees and identifying the two
copies. Then the edges between (0, 0, 0) and (1,0, 0) along with the edge between
(0,1,1) and (1,1,1) give the edge between (1,3) € K4 and the edges between
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Figure 1: A covering map from Q3 to K,

(0,1,0) and (1,1,0) along with the edge between (0,0,1) and (1,0,1) give the
edge between (2,4) € Ky (see figure 1). In general, Q2-_; covers Kz», which we
can see geometrically just as for Q3 covering K4. We can think of producing the
covering by choosing a set of @, subgraphs of Q2~_1 rotating the Q,, subgraphs
until vertex j is above vertex 7, and collapsing the copies of @Q,, together. This
gives edges between vertex i and all vertices j not already adjacent to ¢ in @,
resulting in a covering of Ka» by Qan_1. We show this formally below, but first
must develop some additional ideas.

Definition 4. A Grey Code is an ordering of all binary n-tuples such that the
i+ lst item in the ordering differs in one place from the ith.

The reflected binary Grey Code is created by iterating the last possible en-
try in an n tuple such that it is distinct from previous items and differs in
only one place from the previous item. Any Grey Code gives a Hamiltonian
cycle for Q,. One can divide a Grey code into seqments of length 2% and
within each segment, switch the first 2k=1 pumbers with the last. That is,
given (0,0),(0,1),(1,1),(1,0) one can reorder this as (1,1),(1,0),(0,0),(0,1)
or, (0,1),(0,0),(1,0),(1,1) or (1,0),(1,1),(0,1),(0,0). These operations give
27 different arrangements of the n tuples into a Grey code.

Theorem 2. Q2-_1 EN Ko is a covering map.

Proof. There are 22" ~1~ disjoint copies of @, as subgraphs of Q2~_1 since each
time we takes @x[1Q, we double the number of disjoint copies of @, m < k.
Since @, has a Hamiltonian cycle, we can represent (), with its vertices on an 2™
cycle. Label the vertices in order clockwise according to the Grey code, labeling
the ith vertex in the Grey code as vertex i. Then to complete the cube, add
the edges (i,28—i+1) for k = 2,...n and (4k+1,4(k+1)) fork =0,...,2" 2 —1.

We can now create 2" distinct labelings by dividing the Grey codes into seg-
ments of length 2% and switching the first 25! numbers within each block with
the last. We now have 27 labelings, such that each vertex is labeled exactly
once by each number 1,...,2"




We now have 22" 1" disjoint copies of @, which we must connect together
to form Qa»_1. Since in @, each vertex has degree n, each vertex is adjacent
to n distinct vertices, each of which is labeled by a different number. Since
Qa1 = Qn0Q2n_n,_1 there are 2" disjoint copies of Qan»_pn_1 such that each
vertex in each @, is also part of a Q2n_,—1. These Q2n_n_1 subgraphs are la-
beled such that for a given @, each 7 is adjacent in Q2 _n_1 to a vertex labeled
by every number in the set of 2" — n — 1 numbers not equal to i or adjacent to

i in Qn.

This gives Q2n_1 where each vertex is assigned some number 7 = 1,...,2", and
each i is adjacent to vertices labeled by all numbers 1,...,2" not equal to 1.
Then defining f by f(i) = 4, this gives a covering map Q2» 4 K,. O

Theorem 3. Q2 4 Kon on 15 a covering map.

Proof. Create and label the 22" ~"~1 copies of Q,n+1 with their vertices on Can+1
as in Theorem 2. Then each vertex is degree n, and each vertex labeled by an
even number is connected only to vertices labeled with odd numbers. Then for
a given even vertex 4, it is contained in a Qg»_,—_; subgraph. Then label the
vertices adjacent to ¢ in Qan_p—_1 by the odd number not already adjacent to
i and vice versa for odd i. This gives @2~ such that each vertex labeled by
an even number is adjacent to a vertex labeled by every odd number and vice

. . - . f
versa. Then defining f to be f(i) =i gives a covering Qz» — Kan 2n. O
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Figure 2: A covering map from Q4 to K4,4

3.2 Box Products

Since YOZ contains Y and Z as subgraphs, it seems natural that if ¥ END e
and Z % W then YOZ % XOW. As we show in this section, this indeed holds
true, but first we must define some terminology.

Definition 5. Given a graph X, a spanning tree T of X is a tree that contains
all the vertices of X and is a subgraph of X.




Definition 6. Given a graph X and a spanning tree T, the cycle edges of X
are those edges in X\T.

Theorem 4. Let XY, Z, W be graphs such thatY S Xisa covering map and
ZAhWisa covering map. Then YOZ £, XOW is a covering map.

Proof. Let |[V(X)| = z, and [V(W)| = w so |[V(XOW)| = zw. Also |V(Y)| =
mz and |V{(Z)| = nw so |V(ZOX)| = mnzw. Consider a spanning tree in
XOW composed of z spanning trees of the X plus w — 1 edges from the W;
that connect W; to W, 1. Form mn copies of this tree. Consider the cycle edges
from one X; in the first spanning tree and connect them to the first m spanning
trees according to f. Repeat this for the remaining n — 1 spanning trees to give
n copies of Y. Repeat for the remaining = — 1 copies of X;. This gives nx copies
of Y. Now consider the edges from each W; and repeat the process adding the
edges according the g. This gives mw copies of Z. The resulting graph, U, is
clearly a cover of XOOW. Since U is constructed by taking mx = |V (Y)| copies
of Y and connecting them with nw = |V(Z)| copies of Z, then U = YDZ.

Hence YOZ - X OW, where k results from applying f toY and g to Z is a
covering map. O

A covering morphisms ¥ — X can be given in terms of a group T in addition
to a function f.

Definition 7. A group T is the Galois group of Y over X, denoted Gal(Y/X),
if T is the group of graph automorphisms of Y such that given f:Y — X then

f(’Y(y)) = f(y), v€TL, Vy ey,

The Galois cover of a group can be generated by making |I'| copies of some
spanning tree T' C X. Then choose some set of generators of I'. For each gen-
erator, a, there is at least one edge (v,u) € X that is covered by the edges
(Vi Ug.i) €Y, Yo; = f~}(v). The remaining edges (w,z) € X are covered by
the edges (w;, z3.;) € Y for any 8 € I,

Now we get the following corollary of Theorem 2 by describing the covering

morphisms in terms of groups.

Corollary 1. Let |Gal(Y/X) = G where |G| = m and |Gal(Z/W) = H where
|H| = n. Then Gal(YOZ/XOW) =G x H.

Proof. If the maps g and h are defined according to the groups G and H then
k corresponds to G x H. O

3.3 Box Exponential

For the remaining section we consider all graphs to be simple, that is, containing
no loops or multi-edges.




We now define another operation on graphs, known as the box exponential, and
denoted [Z, X].

Consider ZOKy — X. Then ZOK, contains two copies of Z labeled Z; and Z;
each of which is mapped into X.

Definition 8. If X and Z are graphs, define W = [Z, X] to be the graph where
V(W) is the set of morphisms Z L X and E(W) is the set of morphisms

ZOK, 4 x connecting the two vertices correponding to each morphism, Z; 4,
X where Z; ¢ ZUK,.

Z—-A B 21 12

1 [Z,X] = 32 23

Figure 3: [Ka, C3]

This parallels a situation in set theory. For sets R, S, the set theoretic exponen-
tial, denoted S” or [R, 5], is the set of all maps of R into S. The set theoretical
exponent is adjoint to the set theoretic product, meaning there is a natural bi-
jection between 7' — [R, S] and T x R, S. Dochterman shows that for graphs the
box exponential is also adjoint to the box product, meaning there is a natural
bijection between the maps Z — [V, X] and Z0OY, X for graphs X,Y, Z.

Definition 9. Let Cy(X) denote the set of injective maps of C4 into X. That
is, all maps of Cy into X such that all the vertices of C4 map to distinct vertices
of X.

Theorem 5. Let Y L X be an n sheeted cover. Then [K2,Y] 4, [K2,X] s a
covering map if and only if C4(Y) — Cu(X) isn to 1.

To prove sufficiency, assume Cy(Y) — Cy(X) is n to 1.

Since we are considering only simple graphs, then C4; — C4 can be a cover-
ing map, but there does not exist an A such that C4y — A is a covering map.
Therefore if Cy € Y then C4(Y) = f~1(C4(X)) and since by assumption there
is an n to 1 map between C4(Y) and C4(X), so f(Cy(Y)) = Ca(X).

Now consider the set of vertices and edges of [K2, X| and [K2,Y].
V([K2, X]) = E(X) and




Given v € V([Kag, X]) then v = (a,b) € E(X). The set of vertices adjacent to v

is the set {(a,c:), (b,d;), (b, a), (@, V) | (a,¢:), (b, d;) € E(X),Cq — (a,b,d', ) €
X}

Then V([Kz, Y]) = B(Y) = {(w,v) | (Fw), f(v) € BX)} |

Given w € V([K2, X)) then w = (a°,b") € E(Y) such that f(a') = a, f(b*) =b.
Then the set of vertices adjacent to w is the set

{(a®,¢5), (b7, d}), (b",a°), (a”, by (a%, ), (b7, d) € E(X)’ Cq — (a%,0%,a",0") €
Y} where a represents a particular f~!(a) and ¢* is the particular f ~1(c) ad-
jacent to a® and likewise for b",d".

This indeed gives a covering map since by the above w € V([K3, X]) is adjacent
to vertices w1, ... ws if and only if f(w) is adjacent to f(w1),... f(wk).

It is necessary that C4(Y) — C4(X) be n to 1 since if not then there will be
some vertex w € V([Kz,Y]) such that deg(w) < deg(f(w)). We see this since
for v € Y, then deg(v) = deg(f(v)), so an edge (u,v) € E(Y) and (f(u), f(v)) €
E(X) has the same number of morphisms to adjacent edges which gives the
same contribution to the degree of w = (u,v) and f(w) = (f(u), f(v)). Then if
(u,v) ¢ C4(Y) but (f(u), f(v)) € Ca(X), this gives an aditional edge incident

to f(w) but not to w, giving deg(w) < deg(f(w)). Hence [K>2,Y] 4 (K2, X] is
not a covering.

Corollary 2. If Gal(Y/X) = G then Gal([K2,Y]/[K2,X]) = G.

4 Conclusion

While much work has been done on the box product of graphs, little considera-
tion has been given to the box exponential. Further work, both on the covering
maps of the box exponential with a general exponent, and on other properties of
the graph exponential are intersting topics worth exploring. Additionally there
are many open questions about graph covering maps, such as enumerating all
graphs that are covered by a given graph. Perhaps some of these questions
are easier to answer for box product graphs than general graphs. Further, due
to the geometric nature of graphs, it is of interest to consider whether there
are other algebraic ideas besides the graph specrum that are better approached
from a geometric viewpoint.
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